求實數(shù)a的取值范圍,使得關于x的方程x2+2(a-1)x+2a+6=0分別滿足下列條件:

(1)有兩個都大于1的實數(shù)根;

(2)至少有一個正實數(shù)根.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=kx,(k≠0)且滿足f(x+1)•f(x)=x2+x,函數(shù)g(x)=ax,(a>0且a≠1).
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若函數(shù)f(x)為R上的增函數(shù),h(x)=
f(x)+1
f(x)-1
(f(x)≠1)
,問是否存在實數(shù)m使得h(x)的定義域和值域都為[m,m+1]?若存在,求出m的值;若不存在,請說明理由;
(Ⅲ)已知關于x的方程g(2x+1)=f(x+1)•f(x)恰有一實數(shù)解為x0,且x0∈(
1
4
,
1
2
)
求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設命題p:函數(shù)f(x)=lg(x2-4x+a2)的定義域為R;命題q:?m∈[-1,1],不等式a2-5a-3≥
m2+8
恒成立.如果命題“p∨q”為真命題,且“p∧q”為假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:閱讀理解

仔細閱讀下面問題的解法:
設A=[0,1],若不等式21-x+a>0在A上有解,求實數(shù)a的取值范圍.
解:令f(x)=21-x+a,因為f(x)>0在A上有解.
⇒f(x)在A上的最大值大于0,
又∵f(x)在[0,1]上單調遞減
⇒f(x)最大值=f(0)

=2+a>0⇒a>-2
學習以上問題的解法,解決下面的問題,已知:函數(shù)f(x)=x2+2x+3(-2≤x≤-1).
①求f(x)的反函數(shù)f-1(x)及反函數(shù)的定義域A;
②設B={x|lg
10-x
10+x
>lg(2x+a-5)}
,若A∩B≠∅,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:關于x的方程ax-1=0在[-1,1]上有解;命題q:只有一個實數(shù)x滿足不等式x2+2ax+2a≤0,若命題“p或q”是假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合P={x|x2-3x+2≤0},S={x|x2-2ax+a≤0},若S∩P=S,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案