【題目】已知點(diǎn)P(2,2),圓C:x2+y2-8y=0,過點(diǎn)P的動(dòng)直線l與圓C交于A,B兩點(diǎn),線段AB的中點(diǎn)為M,O為坐標(biāo)原點(diǎn).

(1)求M的軌跡方程;

(2)當(dāng)|OP|=|OM|時(shí),求l的方程及△POM的面積.

【答案】見解析

【解析】

解:(1)圓C的方程可化為x2+(y-4)2=16,

所以圓心為C(0,4),半徑為4.

設(shè)M(x,y),則=(x,y-4),=(2-x,2-y).

由題設(shè)知·=0,

故x(2-x)+(y-4)(2-y)=0,即(x-1)2+(y-3)2=2.

由于點(diǎn)P在圓C的內(nèi)部,

所以M的軌跡方程是(x-1)2+(y-3)2=2.

(2)由(1)可知M的軌跡是以點(diǎn)N(1,3)為圓心,為半徑的圓.

由于|OP|=|OM|,故O在線段PM的垂直平分線上,又P在圓N上,從而ON⊥PM.

因?yàn)镺N的斜率為3,所以l的斜率為-

故l的方程為y=-x+.

又|OM|=|OP|=2,O到l的距離d為

所以|PM|=2,

所以△POM的面積為S△POM|PM|d=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)求函數(shù)的最小值;

(2)若函數(shù)的圖象恰有一個(gè)公共點(diǎn),求實(shí)數(shù)的值;

(3)若函數(shù)有兩個(gè)不同的極值點(diǎn),且,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=,x[1,+∞).

(1)當(dāng)a=時(shí),判斷并證明f(x)的單調(diào)性;

(2)當(dāng)a=-1時(shí),求函數(shù)f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知, .

(1)當(dāng)時(shí), 為增函數(shù),求實(shí)數(shù)的取值范圍;

(2)設(shè)函數(shù),若不等式對(duì)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在多面體ABCDEF中,底面ABCD是梯形,四邊形ADEF是正方形,AB∥DC,AB=AD=1,CD=2,AC=EC=

(1)求證:平面EBC⊥平面EBD;

(2)設(shè)M為線段EC上一點(diǎn),且3EM=EC,試問在線段BC上是否存在一點(diǎn)T,使得MT∥平面BDE,若存在,試指出點(diǎn)T的位置;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過曲線C1=1(a>0,b>0)的左焦點(diǎn)F1作曲線C2:x2+y2=a2的切線,設(shè)切點(diǎn)為M,直線F1M交曲線C3:y2=2px(p>0)于點(diǎn)N,其中曲線C1與C3有一個(gè)共同的焦點(diǎn),若|MF1|=|MN|,則曲線C1的離心率為( )

A. B. -1 C. +1 D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線C:y2=4x,過點(diǎn)A(1,2)作拋物線C的弦AP,AQ.

(1)若AP⊥AQ,證明:直線PQ過定點(diǎn),并求出定點(diǎn)的坐標(biāo);

(2)假設(shè)直線PQ過點(diǎn)T(5,-2),請(qǐng)問是否存在以PQ為底邊的等腰三角形APQ?若存在,求出△APQ的個(gè)數(shù),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=aln x+ (a∈R).

(1)當(dāng)a=1時(shí),求f(x)在x∈[1,+∞)內(nèi)的最小值;

(2)若f(x)存在單調(diào)遞減區(qū)間,求a的取值范圍;

(3)求證ln(n+1)> +…+ (n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】市出租車的現(xiàn)行計(jì)價(jià)標(biāo)準(zhǔn)是:路程在2 km以內(nèi)(含2 km)按起步價(jià)8元收取,超過2 km后的路程按1.9 元/km收取,但超過10 km后的路程需加收50%的返空費(fèi)(即單價(jià)為1.9×(1+50%)=2.85(元/km))

(1)將某乘客搭乘一次出租車的費(fèi)用f(x)(單位:元)表示為行程x(0<x≤60,單位:km)的分段函數(shù);

(2)某乘客的行程為16 km,他準(zhǔn)備先乘一輛出租車行駛8 km后,再換乘另一輛出租車完成余下行程,請(qǐng)問:他這樣做是否比只乘一輛出租車完成全部行程更省錢?

(現(xiàn)實(shí)中要計(jì)等待時(shí)間且最終付費(fèi)取整數(shù),本題在計(jì)算時(shí)都不予考慮)

查看答案和解析>>

同步練習(xí)冊(cè)答案