18.為了解某市居民日常用水量的標準,某機構(gòu)通過抽樣獲得了100位居民某年的月均用水量(單位:噸),如表是這100位居民月均用水量的頻率分布表,根據(jù)如表解答下列問題:
(1)求如表中a和b的值;
(2)請將下面的頻率分布直方圖補充完整,并根據(jù)直方圖估計該市每位居民月均用水量的中位數(shù)(精確到0.01).
分組頻數(shù)頻率
[0,1)10b
[1,2)200.20
[2,3)a0.30
[3,4)200.20
[4,5)100.10
[5,6]100.10
合計1001.00

分析 (1)利用頻數(shù)之和等于樣本容量求出a處的數(shù);利用頻率分布表得出第一組的頻數(shù)為10,求出b處的數(shù);
(2)根據(jù)各小組的頻率比即頻率分布直方圖的高度比即可補全頻率分布直方圖;設(shè)所求中位數(shù)為x,則0.1+0.2+(x-2)×0.3=0.5,即可得出結(jié)論.

解答 解:(1)由頻率分布表得出第二小組的頻率為:0.03,a=30; …(2分)
由頻率分布表得出第一組的頻數(shù)為10,頻率為b=0.10.…(4分)
(2)頻率分布直方圖
設(shè)所求中位數(shù)為x,則0.1+0.2+(x-2)×0.3=0.5,
解得:x≈2.67(噸)
答:估計該市每位居民月均用水量的中位數(shù)為2.67噸.

點評 用樣本估計總體,是研究統(tǒng)計問題的一個基本思想方法.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

7.已知集合A={x|x2-4<0},B={x|-1<x≤5},則A∩(∁RB)=( 。
A.(-2,0)B.(-2,-1)C.(-2,-1]D.(-2,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.命題“若c<0,則方程x2+x+c=0有實數(shù)解”,則( 。
A.該命題的逆命題為真,逆否命題也為真
B.該命題的逆命題為真,逆否命題也假
C.該命題的逆命題為假,逆否命題為真
D.該命題的逆命題為假,逆否命題也為假

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.下列各組函數(shù)中表示同一函數(shù)的是( 。
A.$f(x)=x,g(x)={(\sqrt{x})^2}$B.$f(x)=\left|x\right|,g(x)=\sqrt{[}3]{x^3}$
C.$f(x)={x^2},g(x)=\left\{\begin{array}{l}{x^2},(x>0)\\-{x^2},(x<0)\end{array}\right.$D.$f(x)=\frac{{{x^2}-1}}{x-1},g(t)=t+1(t≠1)$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.設(shè)x,y滿足不等式$\left\{\begin{array}{l}y≤2\\ x+y≥1\\ x-y≤1\end{array}\right.$,若M=4x+y,N=($\frac{1}{2}$)x,則M-N的最小值為-4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,點A(0,1),且|AF1|=$\sqrt{5}$,橢圓C的離心率為$\frac{2}{3}$.
(1)求橢圓C的標準方程;
(2)過點A作直線l與橢圓C交于M,N兩點,若3$\overrightarrow{AM}$+2$\overrightarrow{AN}$=$\overrightarrow 0$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.若x,y滿足約束條件$\left\{\begin{array}{l}x-2≥0\\ x-y≤0\\ x+y-6≤0\end{array}\right.$,那么$\frac{y}{x}$的最大值是2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.f(x)為偶函數(shù),當x>0時,f(x)=2x-1,則當x<0時,f(x)=( 。
A.2x-1B.-2x+1C.2x+1D.-2x-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.設(shè)集合A={x|x∈N|x>1},則( 。
A.∅∉AB.1∉AC.1∈AD.{1}⊆A

查看答案和解析>>

同步練習冊答案