【題目】已知拋物線,斜率為的直線交拋物線,兩點,當直線過點時,以為直徑的圓與直線相切.

(1)求拋物線的方程;

(2)與平行的直線交拋物線于,兩點,若平行線,之間的距離為,且的面積是面積的O為坐標原點),求的方程.

【答案】(1);(2),或者,

【解析】

(1)設(shè)直線AB方程為,代入,

利用弦長公式求得弦長,結(jié)合以AB為直徑的圓與直線x=-1相切列式求得p,則拋物線方程可求;
(2)O到直線l1的距離為,寫出三角形AOB的面積,同理寫出三角形COD的面積,結(jié)合△OCD的面積是△OAB面積的倍求b,則直線l1和l2的方程可求.

(1)設(shè)直線AB方程為,

代入

,

設(shè)

,

,

時,,AB的中點為,

依題意可知,解之得,

∴拋物線方程為.

(2)由(1)得O到直線的距離為,

.

∵平行線之間的距離為

∴直線CD的方程為,

.

依題意可知,即,

化簡得,

,代入(1)中均成立,

或者.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在疫情這一特殊時期,教育行政部門部署了停課不停學的行動,全力幫助學生在線學習.復課后進行了摸底考試,某校數(shù)學教師為了調(diào)查高三學生這次摸底考試的數(shù)學成績與在線學習數(shù)學時長之間的相關(guān)關(guān)系,對在校高三學生隨機抽取45名進行調(diào)查.知道其中有25人每天在線學習數(shù)學的時長是不超過1小時的,得到了如下的等高條形圖:

1)是否有的把握認為高三學生的這次摸底考試數(shù)學成績與其在線學習時長有關(guān);

2)將頻率視為概率,從全校高三學生這次數(shù)學成績超過120分的學生中隨機抽取10人,求抽取的10人中每天在線學習時長超過1小時的人數(shù)的數(shù)學期望與方差.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,直線不過原點且不平行于坐標軸,有兩個交點,,線段的中點為

1)若,點在橢圓上,、分別為橢圓的兩個焦點,求的范圍;

2)若過點,射線與橢圓交于點,四邊形能否為平行四邊形?若能,求此時直線斜率;若不能,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4-5:不等式選講]

已知函數(shù).

(Ⅰ)當時,求的解集;

(Ⅱ)當時, 恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,平面,,,且,,

1)求證:

2)在線段上,是否存在一點,使得二面角的大小為,如果存在,求與平面所成的角的正弦值,如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線C上每一點到直線l的距離比它到點的距離大1.

1)求曲線C的方程;

2)曲線C任意一點處的切線m(不含x軸)與直線相交于點M,與直線l相交于點N,證明:為定值,并求此定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在中,,,分別為的中點是由繞直線旋轉(zhuǎn)得到,連結(jié),.

1)證明:平面;

2)若,棱上是否存在一點,使得?若存在,確定點 的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)α,β是空間中的兩個平面,l,m是兩條直線,則使得αβ成立的一個充分條件是(

A.lαmβ,lmB.lmlα,mβ

C.lα,mα,lβ,mβD.lm,lα,mβ

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數(shù)方程為,為參數(shù)),以坐標原點為極點,軸正半軸為極軸建立極坐標系,直線的坐標方程為,若直線與曲線相切.

(1)求曲線的極坐標方程;

(2)在曲線上取兩點、于原點構(gòu)成,且滿足,求面積的最大值.

查看答案和解析>>

同步練習冊答案