【題目】設(shè).
(1)求的單調(diào)區(qū)間;
(2)求在[-5, ]的最大值與最小值.
【答案】(1)單調(diào)增區(qū)間為(-2, ),單調(diào)減區(qū)間為(-∞,-2)和(,+∞);(2)f (x)取最小值是0,f (x)取最大值是63.
【解析】試題分析:
(1)求導(dǎo)可得f ′(x)= -(x+2)(3x-2),利用導(dǎo)函數(shù)研究函數(shù)的單調(diào)性可得單調(diào)增區(qū)間為(-2, ),單調(diào)減區(qū)間為(-∞,-2)和(,+∞);
(2)由題意結(jié)合(1)的結(jié)論考查極值和端點(diǎn)處的函數(shù)值可得x= -2時,f (x)取最小值0,x= -5時,f (x)取最大值63.
試題解析:
(1)f ′(x)= -(x+2)(3x-2),
令f ′(x)>0得 -2<x<,令f ′(x)<0得x<-2或x>,
∴單調(diào)增區(qū)間為(-2, ),單調(diào)減區(qū)間為(-∞,-2)和(,+∞);
(2)由單調(diào)性可知,當(dāng)x= -2時,f (x)有極小值f (-2 )=0,當(dāng)x=時,f (x)有極大值f ()=;
又f (-5)=63,f ()=,∴x= -2時,f (x)取最小值0,x= -5時,f (x)取最大值63.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,點(diǎn)E、F(E與A、D不重合)分別在棱AD,BD上,且EF⊥AD. 求證:(Ⅰ)EF∥平面ABC;
(Ⅱ)AD⊥AC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是樣本容量為200的頻率分布直方圖.根據(jù)樣本的頻率分布直方圖估計,樣本數(shù)落在[6,10]內(nèi)的頻數(shù)為 ,數(shù)據(jù)落在(2,10)內(nèi)的概率約為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列的前項和為,若數(shù)列的各項按如下規(guī)律排列:,,,,,,,,,,…,,, …,,…有如下運(yùn)算和結(jié)論:①;②數(shù)列,,,,…是等比數(shù)列;③數(shù)列,,,,…的前項和為;④若存在正整數(shù),使,,則.其中正確的結(jié)論是_____.(將你認(rèn)為正確的結(jié)論序號都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A、B、C所對的邊分別為a、b、c,若= .
(1)求角A;
(2)若f(x)=sinx+cos(x+A),求函數(shù)f(x)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)設(shè)直線的方程為.若直線在兩坐標(biāo)軸上的截距相等,求直線的方程;
(2)過直線:上的點(diǎn)作直線,若直線,與軸圍成的三角形的面積為2,則直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了弘揚(yáng)民族文化,某中學(xué)舉行了“我愛國學(xué),傳誦經(jīng)典”考試,并從中隨機(jī)抽取了60名學(xué)生的成績(滿分100分)作為樣本,其中成績不低于80分的學(xué)生被評為優(yōu)秀生,得到成績分布的頻率分布直方圖如圖所示.
(1)若該所中學(xué)共有2000名學(xué)生,試?yán)脴颖竟烙嬋_@次考試中優(yōu)秀生人數(shù);
(2)(i)試估計這次參加考試的學(xué)生的平均成績(同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(ii)若在樣本中,利用分層抽樣的方法從成績不低于70分的學(xué)生中隨機(jī)抽取6人,再從中抽取3人贈送一套國學(xué)經(jīng)典學(xué)籍,試求恰好抽中2名優(yōu)秀生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,BC=2,點(diǎn)M,N分別是邊AB,CD上的點(diǎn),且MN∥BC,.若將矩形ABCD沿MN折起使其形成60°的二面角(如圖).
(1)求證:平面CND⊥平面AMND;
(2)求直線MC與平面AMND所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線l經(jīng)過點(diǎn)A(﹣1,0),其傾斜角是α,以原點(diǎn)O為極點(diǎn),以x軸的非負(fù)半軸為極軸,與直角坐標(biāo)系xOy取相同的長度單位,建立極坐標(biāo)系.設(shè)曲線C的極坐標(biāo)方程是ρ2=6ρcosθ﹣5.
(Ⅰ)若直線l和曲線C有公共點(diǎn),求傾斜角α的取值范圍;
(Ⅱ)設(shè)B(x,y)為曲線C任意一點(diǎn),求 的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com