9、已知p(x):x2+2x-m>0,如果p(1)是假命題,p(2)是真命題,則實(shí)數(shù)m的取值范圍是
3≤m<8
分析:由p(1)是假命題,p(2)是真命題,我們分別將x=1,x=2代入即可構(gòu)造關(guān)于m的不等式組,解不等式組即可得到實(shí)數(shù)m的取值范圍.
解答:解:因?yàn)閜(1)是假命題,
所以1+2-m≤0,
解得m≥3,又因?yàn)閜
(2)是真命題,
所以4+4-m>0,
解得m<8,
所以實(shí)數(shù)m的取值范圍是3≤m<8.
故答案為:3≤m<8
點(diǎn)評(píng):若p為真命題時(shí),參數(shù)a的范圍是A,則p為假命題時(shí),參數(shù)a的范圍是CRA.這個(gè)結(jié)論在命題的否定中經(jīng)常用到,請(qǐng)同學(xué)們熟練掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

15、已知p(x):x2+2x-m>0,如果p(1)是假命題,p(2)是真命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知p:?x∈R,x2+mx+1=0;q:?x∈R,4x2+4(m-2)x+1>0,若“p或q”為真命題,“p且q”為假命題,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題中:
①命題“若ab≠0,則a≠0且b≠0”的逆否命題是真命題;
②命題“y=sinx是周期函數(shù)”的否定是“y=sinx不是周期函數(shù)”;
③如果p∨q為真命題,則p∧q也一定是真命題; 
④已知p:?x∈R,x2+x+1<0,則¬p:?x∈R,x2+x-1≥0;
其中正確的有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知p:關(guān)于x的方程x2-ax+4=0有實(shí)根,q:二次函數(shù)y=2x2+ax+4在[3,+∞)上是增函數(shù),若“p或q”是真命題,而“p且q是假命題”,則a的取值范圍是(    )

A.(-12,-4]∪[4,+∞)                         B.[-12,-4)∪[4,+∞)

C.(-∞,-12)∪(-4,4)                      D.[-12,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案