【題目】已知橢圓,分別是的上頂點(diǎn)和下頂點(diǎn).

1)若,上位于軸兩側(cè)的兩點(diǎn),求證:四邊形不可能是矩形;

2)若的左頂點(diǎn),上一點(diǎn),線段軸于點(diǎn),線段軸于點(diǎn),,求.

【答案】1)見(jiàn)解析(2

【解析】

1,計(jì)算,的斜率的乘積,根據(jù)斜率公式即可證明.
2)設(shè),分別求出直線的方程,求出點(diǎn)的坐標(biāo),再根據(jù),結(jié)合點(diǎn)在橢圓上即可求出.

解法一:(1)依題意,.

設(shè),則,且,

設(shè)直線,的斜率分別為,,

所以不垂直,所以四邊形不可能是矩形.

2)設(shè),則,且,

所以直線,令,得,

所以

直線,所以,

又因?yàn)?/span>,所以,所以.

得,,

解得(舍去),

所以,,故.

解法二:(1)假設(shè)四邊形為矩形,

因?yàn)?/span>關(guān)于原點(diǎn)對(duì)稱(chēng),所以直線原點(diǎn)且,

設(shè)直線,

,解得

所以,

所以,顯然不成立,

所以假設(shè)不成立,所以四邊形不可能是矩形.

2)同解法一.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若,過(guò)分別作曲線的切線,且關(guān)于軸對(duì)稱(chēng),求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某醫(yī)科大學(xué)實(shí)習(xí)小組為研究實(shí)習(xí)地晝夜溫差與患感冒人數(shù)之間的關(guān)系,分別到當(dāng)?shù)貧庀蟛块T(mén)和某醫(yī)院抄錄了1月份至3月份每月5日、20日的晝夜溫差情況與因患感冒而就診的人數(shù),得到如表資料:

日期

15

120

25

220

35

320

晝夜溫差

10

11

13

12

8

6

就診人數(shù)(人)

22

25

29

26

16

12

該小組確定的研究方案是:先從這六組數(shù)據(jù)中隨機(jī)選取4組數(shù)據(jù)求線性回歸方程,再用剩余的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

1)求剩余的2組數(shù)據(jù)中至少有一組是20日的概率;

2)若選取的是120日,25日,220日,35日四組數(shù)據(jù).

①請(qǐng)根據(jù)這四組數(shù)據(jù),求出關(guān)于的線性回歸方程,用分?jǐn)?shù)表示);

②若由線性回歸方程得到的估計(jì)數(shù)據(jù)與剩余的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)1人,則認(rèn)為得到的線性回歸方程是理想的,試問(wèn)①中所得線性回歸方程是否理想?

附參考公式:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P-ABCD中,平面ABCD,底面ABCD是等腰梯形,

1)證明:平面PAC;

2)若,,設(shè),且,求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)令,討論的單調(diào)性;

2)若,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

討論的單調(diào)性;

當(dāng)時(shí),若關(guān)于x的不等式恒成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

1)若,求的極大值點(diǎn);

2)若函數(shù),判斷的單調(diào)性;

3)若函數(shù)有兩個(gè)極值點(diǎn),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列滿足:(常數(shù)),,(,.數(shù)列滿足:.

1)分別求,的值:

2)求數(shù)列的通項(xiàng)公式;

3)問(wèn):數(shù)列的每一項(xiàng)能否均為整數(shù)?若能,求出的所有可能值;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】改革開(kāi)放以來(lái),我國(guó)農(nóng)村7億多貧困人口擺脫貧困,貧困發(fā)生率由1978年的97.5%下降到2018年底的1.4%,創(chuàng)造了人類(lèi)減貧史上的中國(guó)奇跡,為全球減貧事業(yè)貢獻(xiàn)了中國(guó)智慧和中國(guó)方案.貧困發(fā)生率是指低于貧困線的人口占全體人口的比例.2012年至2018年我國(guó)貧困發(fā)生率的數(shù)據(jù)如下表:

年份(

2012

2013

2014

2015

2016

2017

2018

貧困發(fā)生率%

10.2

8.5

7.2

5.7

4.5

3.1

1.4

1)從表中所給的7個(gè)貧困發(fā)生率數(shù)據(jù)中任選兩個(gè),求至少有一個(gè)低于5%的概率;

2)設(shè)年份代碼,利用回歸方程,分析2012年至2018年貧困發(fā)生率的變化情況,并預(yù)測(cè)2019年貧困發(fā)生率.

附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:,

查看答案和解析>>

同步練習(xí)冊(cè)答案