【題目】如圖,在四棱錐P-ABCD中,平面ABCD,底面ABCD是等腰梯形,

1)證明:平面PAC;

2)若,,設(shè),且,求四棱錐P-ABCD的體積.

【答案】1)見解析(296

【解析】

1)由平面ABCD,可知,又,即可說明平面PAC;

2)連接OP,由平面PAC可知,又,得,又由四邊形ABCD為等腰梯形,,可知,均為等腰直角三角形,由直角三角形斜邊上的中線等于斜邊的一半可得梯形ABCD的高,即可求得梯形ABCD的面積S,再由勾股定理求得四棱錐P-ABCD的高PA,代入棱錐體積公式,即可求得答案.

1)證明:因?yàn)?/span>平面ABCD,平面ABCD,所以

,,平面PAC,平面PAC

所以平面PAC

2)如圖,連接OP,

由(1)知,平面PAC

平面PAC,知

中,因?yàn)?/span>,得,

又因?yàn)樗倪呅?/span>ABCD為等腰梯形,,

所以,均為等腰直角三角形.

從而梯形ABCD的高為

于是梯形ABCD的面積

在等腰直角三角形AOD中,

所以,

故四棱錐P-ABCD的體積為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線C:x2=6y與直線l:y=kx+3交于M,N兩點(diǎn).

(1)設(shè)M,N到y(tǒng)軸的距離分別為d1,d2,證明:d1d2為定值.

(2)y軸上是否存在點(diǎn)P,使得當(dāng)k變動(dòng)時(shí),總有∠OPM=∠OPN?若存在,求以線段OP為直徑的圓的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知矩陣,,直線經(jīng)矩陣所對(duì)應(yīng)的變換得到直線,直線又經(jīng)矩陣所對(duì)應(yīng)的變換得到直線,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某保險(xiǎn)公司對(duì)一個(gè)擁有20000人的企業(yè)推出一款意外險(xiǎn)產(chǎn)品,每年每位職工只要交少量保費(fèi),發(fā)生意外后可一次性獲得若干賠償金,保險(xiǎn)公司把企業(yè)的所有崗位共分為三類工種,從事這三類工種的人數(shù)分別為12000,6000,2000,由歷史數(shù)據(jù)統(tǒng)計(jì)出三類工種的賠付頻率如下表(并以此估計(jì)賠付概率):

已知三類工種職工每人每年保費(fèi)分別為25元、25元、40元,出險(xiǎn)后的賠償金額分別為100萬(wàn)元、100萬(wàn)元、50萬(wàn)元,保險(xiǎn)公司在開展此項(xiàng)業(yè)務(wù)過程中的固定支出為每年10萬(wàn)元.

(1)求保險(xiǎn)公司在該業(yè)務(wù)所或利潤(rùn)的期望值;

(2)現(xiàn)有如下兩個(gè)方案供企業(yè)選擇:

方案1:企業(yè)不與保險(xiǎn)公司合作,職工不交保險(xiǎn),出意外企業(yè)自行拿出與保險(xiǎn)公司提供的等額賠償金賠償付給意外職工,企業(yè)開展這項(xiàng)工作的固定支出為每年12萬(wàn)元;

方案2:企業(yè)與保險(xiǎn)公司合作,企業(yè)負(fù)責(zé)職工保費(fèi)的70%,職工個(gè)人負(fù)責(zé)保費(fèi)的30%,出險(xiǎn)后賠償金由保險(xiǎn)公司賠付,企業(yè)無(wú)額外專項(xiàng)開支.

請(qǐng)根據(jù)企業(yè)成本差異給出選擇合適方案的建議.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義上的函數(shù),則下列選項(xiàng)不正確的是(

A.函數(shù)的值域?yàn)?/span>

B.關(guān)于的方程個(gè)不相等的實(shí)數(shù)根

C.當(dāng)時(shí),函數(shù)的圖象與軸圍成封閉圖形的面積為

D.存在,使得不等式能成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,平面ABCD,底面ABCD是等腰梯形,

1)證明:平面PAC;

2)若,,設(shè),且,求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,,分別是的上頂點(diǎn)和下頂點(diǎn).

1)若,上位于軸兩側(cè)的兩點(diǎn),求證:四邊形不可能是矩形;

2)若的左頂點(diǎn),上一點(diǎn),線段軸于點(diǎn),線段軸于點(diǎn),,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A0,2),動(dòng)點(diǎn)M到點(diǎn)A的距離比動(dòng)點(diǎn)M到直線y=﹣1的距離大1,動(dòng)點(diǎn)M的軌跡為曲線C

1)求曲線C的方程;

2Q為直線y=﹣1上的動(dòng)點(diǎn),過Q做曲線C的切線,切點(diǎn)分別為DE,求△QDE的面積S的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,,過點(diǎn)的直線與橢圓交于兩點(diǎn),延長(zhǎng)交橢圓于點(diǎn),的周長(zhǎng)為8.

(1)求的離心率及方程;

(2)試問:是否存在定點(diǎn),使得為定值?若存在,求;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案