【題目】已知函數(shù),函數(shù)gx)=-2x+3.

(1)當(dāng)a=2時(shí),求fx)的極值;

(2)討論函數(shù)的單調(diào)性;

(3)若-2≤a≤-1,對(duì)任意x1x2∈[1,2],不等式|fx1)-fx2)|≤t|gx1)-gx2)|恒成立,求實(shí)數(shù)t的最小值.

【答案】(1)fx)極大值=f1)=0,無(wú)極小值

(2)當(dāng)a≤0時(shí),Fx)在(0,+∞)單調(diào)遞增;當(dāng)a>0時(shí),Fx)在單調(diào)遞增,在單調(diào)遞減

(3)

【解析】

(1)當(dāng)a=2時(shí),利用導(dǎo)數(shù)求得函數(shù) 的單調(diào)區(qū)間,進(jìn)而得到極值.

(2)求得,分a≤0和a0,兩種情況討論,即可得出函數(shù)的單調(diào)區(qū)間;

(3)把不等式轉(zhuǎn)化為fx2)-fx1)≤t[gx1)-gx2)],得到fx2)+tgx2)≤fx1)+tgx1)對(duì)任意-2≤a≤-1,1≤x1x2≤2恒成立,令,得到hx)在[1,2]遞減,求得 對(duì)任意a∈[-2,-1],x∈[1,2]恒成立,進(jìn)而轉(zhuǎn)化變量只需要研究,即可求得t的取值范圍.

(1)由題意,當(dāng)a=2時(shí),函數(shù)fx)=lnx-x2+x,

易知fx)在(0,1)遞增,(1,+∞)遞減,

所以函數(shù)fx)極大值為,無(wú)極小值.

(2)由函數(shù)

a≤0時(shí),0,恒成立,Fx)在(0,+∞)單調(diào)遞增;

②當(dāng)a0,由>0得<0得,

所以Fx)在單調(diào)遞增,在單調(diào)遞減.

綜上:當(dāng)a≤0時(shí),Fx)在(0,+∞)單調(diào)遞增;

當(dāng)a>0時(shí),Fx)在單調(diào)遞增,在單調(diào)遞減.

(3)由題知t≥0,

當(dāng)-2≤a≤-1時(shí),fx)>0fx)在(0,+∞)單調(diào)遞增,不妨設(shè)1≤x1x2≤2,

gx)單調(diào)遞減,∴不等式等價(jià)于fx2)-fx1)≤t[gx1)-gx2)].

fx2+tgx2fx1+tgx1)對(duì)任意-2≤a≤-1,1≤x1≤x2≤2恒成立,

,則hx)在[1,2]遞減.

對(duì)任意a∈[-2,-1],x∈[1,2]恒成立.

在[1,2]上恒成立,

在[1,2]單調(diào)遞增,∴,所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),若無(wú)窮數(shù)列滿足:對(duì)所有整數(shù),都成立,則稱-折疊數(shù)列”.

1)求所有的實(shí)數(shù),使得通項(xiàng)公式為的數(shù)列-折疊數(shù)列;

2)給定常數(shù),是否存在數(shù)列,使得對(duì)所有,都是-折疊數(shù)列,且的各項(xiàng)中恰有個(gè)不同的值?證明你的結(jié)論;

3)設(shè)遞增數(shù)列滿足.已知如果對(duì)所有,都是-折疊數(shù)列,則的各項(xiàng)中至多只有個(gè)不同的值,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,直線,圓,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.

(1)求的極坐標(biāo)方程;

(2)若直線的極坐標(biāo)方程為,設(shè)的交點(diǎn)為A,B,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的上下兩個(gè)焦點(diǎn)分別為,過(guò)點(diǎn)軸垂直的直線交橢圓兩點(diǎn),的面積為,橢圓的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的倍.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)已知為坐標(biāo)原點(diǎn),直線軸交于點(diǎn),與橢園交于兩個(gè)不同的點(diǎn),若存在實(shí)數(shù),使得,求的取值范圍,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列四個(gè)命題中真命題是  

A. 同垂直于一直線的兩條直線互相平行

B. 底面各邊相等,側(cè)面都是矩形的四棱柱是正四棱柱

C. 過(guò)空間任一點(diǎn)與兩條異面直線都垂直的直線有且只有一條

D. 過(guò)球面上任意兩點(diǎn)的大圓有且只有一個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是定義在實(shí)數(shù)集上的實(shí)值函數(shù),如果存在,使得對(duì)任何,都有,那么稱高興,如果對(duì)任何,都存在,使得,那么稱幸運(yùn),對(duì)于實(shí)數(shù)和上述函數(shù),定義.

1)①,,判斷是否比高興?

,,判斷是否比幸運(yùn)?

2)判斷下列命題是否正確?并說(shuō)明理由:

①如果高興,高興,那么高興;

②如果幸運(yùn),幸運(yùn),那么幸運(yùn);

3)證明:對(duì)每個(gè)函數(shù),均存在函數(shù),使得對(duì)任何實(shí)數(shù),都比幸運(yùn),也比幸運(yùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知偶函數(shù)滿足,當(dāng)時(shí),,關(guān)于的不等式上有且只有200個(gè)整數(shù)解,則實(shí)數(shù)的取值范圍為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= ln(a x)+bx在點(diǎn)(1,f(1))處的切線是y=0;

(I)求函數(shù)f(x)的極值;

(II)當(dāng)恒成立時(shí),求實(shí)數(shù)m的取值范圍(e為自然對(duì)數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為為橢圓上一動(dòng)點(diǎn),當(dāng)的面積最大時(shí),其內(nèi)切圓半徑為,設(shè)過(guò)點(diǎn)的直線被橢圓截得線段,

當(dāng)軸時(shí),.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若點(diǎn)為橢圓的左頂點(diǎn),是橢圓上異于左、右頂點(diǎn)的兩點(diǎn),設(shè)直線的斜率分別為,若,試問(wèn)直線是否過(guò)定點(diǎn)?若過(guò)定點(diǎn),求該定點(diǎn)的坐標(biāo);若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案