【題目】已知函數(shù)

,求的單調(diào)區(qū)間;

是否存在實數(shù)a,使的最小值為0?若存在,求出a的值;若不存在,說明理由.

【答案】(I)單調(diào)增區(qū)間為,單調(diào)減區(qū)間為;(II)存在實數(shù),使的最小值為0.

【解析】

根據(jù)代入函數(shù)表達式,解出,再代入原函數(shù)得,求出函數(shù)的定義域后,討論真數(shù)對應(yīng)的二次函數(shù)在函數(shù)定義域內(nèi)的單調(diào)性,即可得函數(shù)的單調(diào)區(qū)間;先假設(shè)存在實數(shù)a,使的最小值為0,根據(jù)函數(shù)表達式可得真數(shù)恒成立,且真數(shù)t的最小值恰好是1,再結(jié)合二次函數(shù)的性質(zhì),可列出式子:,由此解出,從而得到存在a的值,使的最小值為0.

,

可得函數(shù)

真數(shù)為

函數(shù)定義域為

可得:當(dāng)時,t為關(guān)于x的增函數(shù);

當(dāng)時,t為關(guān)于x的減函數(shù).

底數(shù)為

函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為

設(shè)存在實數(shù)a,使的最小值為0,

由于底數(shù)為,可得真數(shù)恒成立,

且真數(shù)t的最小值恰好是1,

a為正數(shù),且當(dāng)時,t值為1.

因此存在實數(shù),使的最小值為0.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正三棱柱的所有棱長均為2, , 分別為的中點.

(1)證明: 平面;

(2)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點,的坐標(biāo)分別為,.直線,相交于點,且它們的斜率之積是.記點的軌跡為

Ⅰ)求的方程.

Ⅱ)已知直線,分別交直線于點,軌跡在點處的切線與線段交于點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)的極值;

(2)設(shè)函數(shù).若存在區(qū)間,使得函數(shù)上的值域為,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知三棱柱,平面平面,,分別是的中點.

(1)證明:;

(2)求直線與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果,并且,那么下列不等式中不一定成立的是( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某制造商3月生產(chǎn)了一批乒乓球,從中隨機抽樣100個進行檢查,測得每個球的直徑(單位:mm),將數(shù)據(jù)分組如下:

分組

頻數(shù)

頻率

[3995,3997

10


[3997,3999

20


[3999,4001

50


[4001,4003]

20


合計

100


)請在上表中補充完成頻率分布表(結(jié)果保留兩位小數(shù)),并在圖中畫出頻率分布直方圖;

)若以上述頻率作為概率,已知標(biāo)準(zhǔn)乒乓球的直徑為4000 mm,試求這批球的直徑誤差不超過003 mm的概率;

)統(tǒng)計方法中,同一組數(shù)據(jù)經(jīng)常用該組區(qū)間的中點值(例如區(qū)間[3999,4001)的中點值是4000作為代表.據(jù)此估計這批乒乓球直徑的平均值(結(jié)果保留兩位小數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x) 為奇函數(shù).

(1)b的值;

(2)證明:函數(shù)f(x)在區(qū)間(1,+∞)上是減函數(shù);

(3)解關(guān)于x的不等式f(1x2)f(x22x4)0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的離心率,拋物線的焦點恰好是橢圓的右焦點

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過點作兩條斜率都存在的直線,設(shè)與橢圓交于兩點,與橢圓交于兩點,若的等比中項,求的最小值.

查看答案和解析>>

同步練習(xí)冊答案