6.二次函數(shù)f(x)滿足且f(0)=0,且對任意x∈R總有f(x+1)=f(x)+x+1,求f(x)的解析式.

分析 f(x)是二次函數(shù),設(shè)出解析式,利用待定系數(shù)法求解.

解答 解:由題意:f(x)是二次函數(shù),設(shè)f(x)=ax2+bx+c,
∵f(0)=0,
∴c=0,
則f(x)=ax2+bx,
∵f(x+1)=f(x)+x+1,即a(x+1)2+b(x+1)=ax2+x(b+1)+1
由:$\left\{\begin{array}{l}{2a+b=b+1}\\{a+b=1}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=\frac{1}{2}}\\{b=\frac{1}{2}}\end{array}\right.$.
故得f(x)的解析式為:f(x)=$\frac{1}{2}$x2+$\frac{1}{2}$x+c,

點評 本題考查了函數(shù)解析式的求法,利用了利用待定系數(shù)法,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

16.已知數(shù)列{an}是首項為1,公差為2m的等差數(shù)列,前n項和為Sn,設(shè)bn=$\frac{{S}_{n}}{n•{2}^{n}}$(n∈N*),若數(shù)列{bn}是遞減數(shù)列,則實數(shù)m的取值范圍是[0,1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.解下列方程:
(1)2x=$\sqrt{2}$;       
(2)log2(3x)=log2(2x+1);        
(3)2×5x+1-3=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知命題p:$\frac{a-2}{a}$>2,命題q:?x∈[1,2],x2-ax+1>0.若p∧q與?q同時為假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知2x1+1,2x2+1,2x3+1,…,2xn+1的方差是3,則x1,x2,x3,…,xn的標準差為( 。
A.$\frac{3}{4}$B.$\frac{\sqrt{3}}{2}$C.3D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知a→=(-2,1),b→=(k,-3),c→=(1,2),若(a→-2b→)⊥c→,則|b→|=( 。
A.10B.35C.32D.25

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)f(x)=1+$\frac{x-|x|}{4}$.
(1)用分段函數(shù)的形式表示函數(shù)f(x);
(2)在平面直角坐標系中畫出函數(shù)f(x)的圖象;
在同一平面直角坐標系中,再畫出函數(shù)g(x)=$\frac{1}{x}$(x>0)的圖象(不用列表),觀察圖象直接寫出當x>0時,不等式f(x)>g(x)的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.設(shè)全集U是實數(shù)集R,M={x∈Z|-2≤x≤2},N={x∈N|-1<x≤4},則圖中陰影部分所表示的集合是( 。 
A.{-2,-1}B.{0,1,2}C.{-2,-1,3}D.{-2,-1,0}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.設(shè)數(shù)列{an}的前n項和Sn=2n+1-2,數(shù)列{bn}滿足bn=$\frac{1}{(n+1)lo{g}_{2}{a}_{n}}$,cn=an+bn
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

同步練習冊答案