【題目】觀察下列等式:
(sin )﹣2+(sin )﹣2= ×1×2;
(sin )﹣2+(sin )﹣2+(sin )﹣2+sin( )﹣2= ×2×3;
(sin )﹣2+(sin )﹣2+(sin )﹣2+…+sin( )﹣2= ×3×4;
(sin )﹣2+(sin )﹣2+(sin )﹣2+…+sin( )﹣2= ×4×5;
…
照此規(guī)律,
(sin )﹣2+(sin )﹣2+(sin )﹣2+…+(sin )﹣2= .
【答案】n(n+1)
【解析】解:觀察下列等式:(sin )﹣2+(sin )﹣2= ×1×2;(sin )﹣2+(sin )﹣2+(sin )﹣2+sin( )﹣2= ×2×3;(sin )﹣2+(sin )﹣2+(sin )﹣2+…+sin( )﹣2= ×3×4;(sin )﹣2+(sin )﹣2+(sin )﹣2+…+sin( )﹣2= ×4×5;
…
照此規(guī)律(sin )﹣2+(sin )﹣2+(sin )﹣2+…+(sin )﹣2= ×n(n+1),
故答案為: n(n+1)
由題意可以直接得到答案.;本題考查了歸納推理的問題,關(guān)鍵是找到相對應(yīng)的規(guī)律,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線: ()的焦點為,準線為, ,且在第一象限,已知以為圓心, 為半徑的圓交于, 兩點(在的上方),為坐標原點.
(1)若是邊長為的等邊三角形,且直線: ()與拋物線相交于, 兩點,證明: 為定值;
(2)記直線與拋物線的另一個交點為,若與的面積比為3,證明:直線過點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,a,b,c分別為內(nèi)角A,B,C的對邊,且2asin A=(2b+c)sin B+(2c+b)sin C.
(1)求A的大; (2)若sin B+sin C=1,試判斷△ABC的形狀.(12分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
已知函數(shù)=(sin x+cos x)2+cos 2x.
(1)求函數(shù)的最小正周期;
(2)求函數(shù)在區(qū)間上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)的定義域為R.當x<0時,f(x)=x3﹣1;當﹣1≤x≤1時,f(﹣x)=﹣f(x);當x> 時,f(x+ )=f(x﹣ ).則f(6)=( 。
A.﹣2
B.﹣1
C.0
D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,D是AC的中點,EF∥DB.
(1)已知AB=BC,AE=EC,求證:AC⊥FB;
(2)已知G,H分別是EC和FB的中點,求證:GH∥平面ABC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: ()的左右焦點分別為, ,短軸兩個端點為, ,且四邊形是邊長為的正方形。
(1)求橢圓的方程;
(2)已知圓的方程是,過圓上任一點作橢圓的兩條切線, ,求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|﹣5+21x﹣4x2<0},B={x∈Z|﹣3<x<6},則(RA)∩B的元素的個數(shù)為( )
A.3
B.4
C.5
D.6
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com