【題目】已知橢圓 )的左右焦點(diǎn)分別為, ,短軸兩個(gè)端點(diǎn)為, ,且四邊形是邊長(zhǎng)為的正方形。

(1)求橢圓的方程;

(2)已知圓的方程是,過圓上任一點(diǎn)作橢圓的兩條切線, ,求證:

【答案】(1) (2)見解析

【解析】試題分析:1)由題意可知: , , ,所以,從而可得橢圓的方程;

(2)設(shè),若過點(diǎn)的切線斜率都存在,設(shè)其方程為,與橢圓方程聯(lián)立可得: ,由相切可知: ,即,結(jié)合維達(dá)定理可得: ,再利用點(diǎn)在橢圓上,易得,從而得證.

試題解析:

解:(1) , ,所以

所以橢圓的方程為

(2)設(shè),若過點(diǎn)的切線斜率都存在,設(shè)其方程為

因?yàn)橹本與橢圓相切,所以

整理得

設(shè)橢圓的兩條切線的斜率分別為, ,由韋達(dá)定理,

因?yàn)辄c(diǎn)在圓上,所以,即

所以 ,所以

特別的,若過點(diǎn)的的切線有一條斜率不存在,不妨設(shè)為,則該直線的方程為,則的方程為,所以

綜上所述,對(duì)于任意滿足題設(shè)的點(diǎn),都有

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)需要設(shè)計(jì)一個(gè)倉庫,它由上下兩部分組成,上部的形狀是正四棱錐P﹣A1B1C1D1 , 下部的形狀是正四棱柱ABCD﹣A1B1C1D1(如圖所示),并要求正四棱柱的高O1O是正四棱錐的高PO1的4倍.

(1)若AB=6m,PO1=2m,則倉庫的容積是多少?
(2)若正四棱柱的側(cè)棱長(zhǎng)為6m,則當(dāng)PO1為多少時(shí),倉庫的容積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】觀察下列等式:
(sin 2+(sin 2= ×1×2;
(sin 2+(sin 2+(sin 2+sin( 2= ×2×3;
(sin 2+(sin 2+(sin 2+…+sin( 2= ×3×4;
(sin 2+(sin 2+(sin 2+…+sin( 2= ×4×5;

照此規(guī)律,
(sin 2+(sin 2+(sin 2+…+(sin 2=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和Sn=3n2+8n,{bn}是等差數(shù)列,且an=bn+bn+1
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)令cn= ,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)列{An}、{Bn}分別在某銳角的兩邊上且|AnAn+1|=|An+1An+2|,An≠An+1 , n∈N* , |BnBn+1|=|Bn+1Bn+2|,Bn≠Bn+1 , n∈N* , (P≠Q(mào)表示點(diǎn)P與Q不重合)若dn=|AnBn|,Sn為△AnBnBn+1的面積,則( 。

A.{Sn}是等差數(shù)列
B.{Sn2}是等差數(shù)列
C.{dn}是等差數(shù)列
D.{dn2}是等差數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l過點(diǎn)P(-1,2)且與兩坐標(biāo)軸的正半軸所圍成的三角形面積等于

(1)求直線l的方程.

(2)求圓心在直線l上且經(jīng)過點(diǎn)M(2,1),N(4,-1)的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱臺(tái)ABC﹣DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.

(1)求證:BF⊥平面ACFD;
(2)求直線BD與平面ACFD所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面斜坐標(biāo)系xOy中,xOy=60°,平面上任意一點(diǎn)P關(guān)于斜坐標(biāo)系的斜坐標(biāo)是這樣定義的:若=xe1+ye2(其中e1,e2分別為x軸、y軸同方向的單位向量),則點(diǎn)P的斜坐標(biāo)為(x,y).

(1)若點(diǎn)P在斜坐標(biāo)系xOy中的斜坐標(biāo)為(2,-2),求點(diǎn)P到原點(diǎn)O的距離.

(2)求以原點(diǎn)O為圓心,1為半徑的圓在斜坐標(biāo)系xOy中的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下是新兵訓(xùn)練時(shí),某炮兵連8周中炮彈對(duì)同一目標(biāo)的命中情況的柱狀圖:
(1)計(jì)算該炮兵連這8周中總的命中頻率p0 , 并確定第幾周的命中頻率最高;
(2)以(1)中的p0作為該炮兵連炮兵甲對(duì)同一目標(biāo)的命中率,若每次發(fā)射相互獨(dú)立,且炮兵甲發(fā)射3次,記命中的次數(shù)為X,求X的數(shù)學(xué)期望;
(3)以(1)中的p0作為該炮兵連炮兵對(duì)同一目標(biāo)的命中率,試問至少要用多少枚這樣的炮彈同時(shí)對(duì)該目標(biāo)發(fā)射一次,才能使目標(biāo)被擊中的概率超過0.99?(取lg0.4=﹣0.398)

查看答案和解析>>

同步練習(xí)冊(cè)答案