精英家教網 > 高中數學 > 題目詳情

【題目】已知函數f(x)sin(ωx+φ)cos(ωx+φ)(0<φ<π,ω>0)為偶函數,且y=f(x)圖象的兩相鄰對稱軸間的距離為,則f()的值為( )

A.1B.1C..D.

【答案】B

【解析】

利用輔助角公式進行化簡,結合f(x)是偶函數,求出φ的值,利用f(x)的對稱軸之間的距離求出函數的周期和ω,代入進行求值即可.

f(x)sin(ωx+φ)﹣cos(ωx+φ)=2sin(ωx+φ),

f(x)是偶函數,∴φ,kZ,

φ=

0<φ<π,∴當k=0時,φ,

f(x)=2sin(ωx)=2sin(ωx)=2cosωx,

y=f(x)圖象的兩相鄰對稱軸間的距離為,

,即T=π,即π,

ω=2

f(x)=2cos2x,

f()=2cos(2)=2cos1

故選:B.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數(,).

1)當時,若函數上有兩個零點,求的取值范圍;

2)當時,是否存在,使得不等式恒成立?若存在,求出的取值集合;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知O為坐標原點,,直線AG,BG相交于點G,且它們的斜率之積為.記點G的軌跡為曲線C.

1)若射線與曲線C交于點D,且E為曲線C的最高點,證明:.

2)直線與曲線C交于M,N兩點,直線AM,ANy軸分別交于PQ兩點.試問在x軸上是否存在定點T,使得以PQ為直徑的圓恒過點T?若存在,求出T的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

討論極值點的個數;

有兩個極值點,證明:的極大值大于.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在極坐標系中,極點為,一條封閉的曲線由四段曲線組成:,,.

1)求該封閉曲線所圍成的圖形面積;

2)若直線與曲線恰有3個公共點,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】植物園擬建一個多邊形苗圃,苗圃的一邊緊靠著長度大于30m的圍墻.現(xiàn)有兩種方案:

方案多邊形為直角三角形),如圖1所示,其中;

方案多邊形為等腰梯形),如圖2所示,其中

請你分別求出兩種方案中苗圃的最大面積,并從中確定使苗圃面積最大的方案.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了治理空氣污染,某市設9個監(jiān)測站用于監(jiān)測空氣質量指數(AQI),其中在輕度污染區(qū)、中度污染區(qū)、重度污染區(qū)分別設有2、4、3個監(jiān)測站,并以9個監(jiān)測站測得的AQI的平均值為依據播報該市的空氣質量.

1)若某日播報的AQI119,已知輕度污染區(qū)AQI平均值為70,中度污染區(qū)AQI平均值為115,求重試污染區(qū)AQI平均值;

2)如圖是201811月份30天的AQI的頻率分布直方圖,11月份僅有1AQI.

①某校參照官方公布的AQI,如果周日AQI小于150就組織學生參加戶外活動,以統(tǒng)計數據中的頻率為概率,求該校學生周日能參加戶外活動的概率;

②環(huán)衛(wèi)部門從11月份AQI不小于170的數據中抽取三天的數據進行研究,求抽取的這三天中AQI值不小于200的天數的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,平面,,,且,.

(1)證明:

(2)若,且四棱錐的體積為,求的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】微信運動,是由騰訊開發(fā)的一個類似計步數據庫的公眾賬號.用戶可以通過關注微信運動公眾號查看自己每天或每月行走的步數,同時也可以和其他用戶進行運動量的或點贊.加入微信運動后,為了讓自己的步數能領先于朋友,人們運動的積極性明顯增強,下面是某人20181月至201811月期間每月跑步的平均里程(單位:十公里)的數據,繪制了下面的折線圖.

根據折線圖,下列結論正確的是(

A. 月跑步平均里程的中位數為月份對應的里程數

B. 月跑步平均里程逐月增加

C. 月跑步平均里程高峰期大致在、

D. 月至月的月跑步平均里程相對于月至月,波動性更小,變化比較平穩(wěn)

查看答案和解析>>

同步練習冊答案