【題目】已知函數(shù).
討論極值點的個數(shù);
若有兩個極值點,證明:的極大值大于.
【答案】當時,無極值點;當時,有兩個極值點;當時,只有一個極值點;證明見解析.
【解析】
求導得,再分類討論,,三種情況,即可得出結果;
由知,當時,有兩個極值點,,,所以,則在內為增函數(shù),在內為減函數(shù),在內為增函數(shù),所以的極大值點為.由,得,所以,構造新函數(shù),利用導數(shù)研究單調性,進而求證的極大值大于.
解:的定義域為,.
令,,
當時,,故無極值點;
當時,,設,是方程的兩根,則,,
則當時,,所以只有一個極值點;
當時,有兩個極值點.
綜上,當時,無極值點;當時,有兩個極值點;當時,只有一個極值點.
證明:由知,當時,有兩個極值點,,,所以,
則在內為增函數(shù),在內為減函數(shù),在內為增函數(shù),所以的極大值點為.
由,得,所以.
令,其中,則,
當時,,在上單調遞減,所以當時,,所以的極大值大于.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|x+1|﹣|2x﹣2|的最大值為M,正實數(shù)a,b滿足a+b=M.
(1)求2a2+b2的最小值;
(2)求證:aabb≥ab.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在處的切線方程,求實數(shù)a,b的值;
(2)若函數(shù)在和兩處得極值,求實數(shù)a的取值范圍;
(3)在(2)的條件下,若.求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某外賣平臺為提高外賣配送效率,針對外賣配送業(yè)務提出了兩種新的配送方案,為比較兩種配送方案的效率,共選取50名外賣騎手,并將他們隨機分成兩組,每組25人,第一組騎手用甲配送方案,第二組騎手用乙配送方案.根據(jù)騎手在相同時間內完成配送訂單的數(shù)量(單位:單)繪制了如下莖葉圖:
(1)根據(jù)莖葉圖,求各組內25位騎手完成訂單數(shù)的中位數(shù),已知用甲配送方案的25位騎手完成訂單數(shù)的平均數(shù)為52,結合中位數(shù)與平均數(shù)判斷哪種配送方案的效率更高,并說明理由;
(2)設所有50名騎手在相同時間內完成訂單數(shù)的平均數(shù),將完成訂單數(shù)超過記為“優(yōu)秀”,不超過記為“一般”,然后將騎手的對應人數(shù)填入下面列聯(lián)表;
優(yōu)秀 | 一般 | |
甲配送方案 | ||
乙配送方案 |
(3)根據(jù)(2)中的列聯(lián)表,判斷能否有的把握認為兩種配送方案的效率有差異.
附:,其中.
0.05 | 0.010 | 0.005 | |
3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線的參數(shù)方程為(t為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為.
(1)求直線的普通方程以及曲線C的參數(shù)方程;
(2)過曲線C上任意一點M作與直線的夾角為的直線,交于點N,求的最小值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)sin(ωx+φ)﹣cos(ωx+φ)(0<φ<π,ω>0)為偶函數(shù),且y=f(x)圖象的兩相鄰對稱軸間的距離為,則f()的值為( )
A.﹣1B.1C..D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】FEV1(一秒用力呼氣容積)是肺功能的一個重要指標.為了研究某地區(qū)10~15歲男孩群體的FEV1與身高的關系,現(xiàn)從該地區(qū)A、B、C三個社區(qū)10~15歲男孩中隨機抽取600名進行FEV1與身高數(shù)據(jù)的相關分析.
(1)若A、B、C三個社區(qū)10~15歲男孩人數(shù)比例為1:3:2,按分層抽樣進行抽取,請求出三個社區(qū)應抽取的男孩人數(shù).
(2)經過數(shù)據(jù)處理后,得到該地區(qū)10~15歲男孩身高(cm)與FEV1(L)對應的10組數(shù)據(jù),并作出如下散點圖:
經計算得:,,,,的相關系數(shù).
①請你利用所給公式與數(shù)據(jù)建立關于的線性回歸方程,并估計身高160cm的男孩的FEV1的預報值.
②已知若①中回歸模型誤差的標準差為,則該地區(qū)身高160cm的男孩的FEV1的實際值落在,內的概率為.現(xiàn)已求得,若該地區(qū)有兩個身高160cm的12歲男孩M和N,分別測得FEV1值為2.8L和2.3L,請結合概率統(tǒng)計知識對兩個男孩的FEV1指標作出一個合理的推斷與建議.
附:樣本的相關系數(shù),其回歸方程的斜率和截距的最小二乘法估計分別為,,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設是公差不為零的等差數(shù)列,滿足,,設正項數(shù)列的前項和為,且.
(1)求數(shù)列和的通項公式;
(2)在和之間插入1個數(shù),使、、成等差數(shù)列;在和之間插入2個數(shù)、,使、、、成等差數(shù)列;;在和之間插入個數(shù)、、、,使、、、、、成等差數(shù)列.
① 求;
② 對于①中的,是否存在正整數(shù)、,使得成立?若存在,求出所有的正整數(shù)對;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com