【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.
(1)求直線的普通方程以及曲線C的參數(shù)方程;
(2)過(guò)曲線C上任意一點(diǎn)M作與直線的夾角為的直線,交于點(diǎn)N,求的最小值
【答案】(1)0,(為參數(shù));(2).
【解析】
(1)消去,即得直線的普通方程,利用,,得到曲線C的直角坐標(biāo)方程,進(jìn)而得到曲線C的參數(shù)方程;
(2)設(shè)出點(diǎn)M的坐標(biāo),表示出點(diǎn)M到直線的距離,畫出圖形,得到,求出的最小值,即可求解.
(1)將直線的參數(shù)方程消去參數(shù),
可得直線的普通方程為0.
將,代入曲線C的極坐標(biāo)方程,
可得曲線C的直角坐標(biāo)方程為,
即
故曲線C的參數(shù)方程為(為參數(shù))
(2)設(shè),則M到的距離
,其中.
如圖,過(guò)點(diǎn)M作于點(diǎn)P,
則,則在中,.
當(dāng)時(shí),取得最小值
故的最小值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=n(n+2)(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn,求數(shù)列{bn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,A、B分別為橢圓的上、下頂點(diǎn),若動(dòng)直線l過(guò)點(diǎn),且與橢圓相交于C、D兩個(gè)不同點(diǎn)(直線l與y軸不重合,且C、D兩點(diǎn)在y軸右側(cè),C在D的上方),直線AD與BC相交于點(diǎn)Q.
(1)設(shè)的兩焦點(diǎn)為、,求的值;
(2)若,且,求點(diǎn)Q的橫坐標(biāo);
(3)是否存在這樣的點(diǎn)P,使得點(diǎn)Q的縱坐標(biāo)恒為?若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知O為坐標(biāo)原點(diǎn),,,直線AG,BG相交于點(diǎn)G,且它們的斜率之積為.記點(diǎn)G的軌跡為曲線C.
(1)若射線與曲線C交于點(diǎn)D,且E為曲線C的最高點(diǎn),證明:.
(2)直線與曲線C交于M,N兩點(diǎn),直線AM,AN與y軸分別交于P,Q兩點(diǎn).試問(wèn)在x軸上是否存在定點(diǎn)T,使得以PQ為直徑的圓恒過(guò)點(diǎn)T?若存在,求出T的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論的極值點(diǎn)的個(gè)數(shù);
(2)設(shè)函數(shù),,為曲線上任意兩個(gè)不同的點(diǎn),設(shè)直線的斜率為,若恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
討論極值點(diǎn)的個(gè)數(shù);
若有兩個(gè)極值點(diǎn),證明:的極大值大于.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在極坐標(biāo)系中,極點(diǎn)為,一條封閉的曲線由四段曲線組成:,,,.
(1)求該封閉曲線所圍成的圖形面積;
(2)若直線:與曲線恰有3個(gè)公共點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了治理空氣污染,某市設(shè)9個(gè)監(jiān)測(cè)站用于監(jiān)測(cè)空氣質(zhì)量指數(shù)(AQI),其中在輕度污染區(qū)、中度污染區(qū)、重度污染區(qū)分別設(shè)有2、4、3個(gè)監(jiān)測(cè)站,并以9個(gè)監(jiān)測(cè)站測(cè)得的AQI的平均值為依據(jù)播報(bào)該市的空氣質(zhì)量.
(1)若某日播報(bào)的AQI為119,已知輕度污染區(qū)AQI平均值為70,中度污染區(qū)AQI平均值為115,求重試污染區(qū)AQI平均值;
(2)如圖是2018年11月份30天的AQI的頻率分布直方圖,11月份僅有1天AQI在內(nèi).
①某校參照官方公布的AQI,如果周日AQI小于150就組織學(xué)生參加戶外活動(dòng),以統(tǒng)計(jì)數(shù)據(jù)中的頻率為概率,求該校學(xué)生周日能參加戶外活動(dòng)的概率;
②環(huán)衛(wèi)部門從11月份AQI不小于170的數(shù)據(jù)中抽取三天的數(shù)據(jù)進(jìn)行研究,求抽取的這三天中AQI值不小于200的天數(shù)的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓:的左、右焦點(diǎn)分別為,,離心率為,過(guò)點(diǎn)的直線交橢圓于點(diǎn)、(不與左右頂點(diǎn)重合),連結(jié)、,已知周長(zhǎng)為8.
(1)求橢圓的方程;
(2)若直線的斜率為1,求的面積;
(3)設(shè),且,求直線的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com