【題目】根據(jù)統(tǒng)計(jì)調(diào)查數(shù)據(jù)顯示:某企業(yè)某種產(chǎn)品的質(zhì)量指標(biāo)值服從正態(tài)分布,從該企業(yè)生產(chǎn)的這種產(chǎn)品(數(shù)量很大)中抽取100件,測量這100件產(chǎn)品的質(zhì)量指標(biāo)值,由測量結(jié)果得到如圖所示的頻率分布直方圖,質(zhì)量指標(biāo)值落在區(qū)間,,內(nèi)的頻率之比為.
(1)求這100件產(chǎn)品質(zhì)量指標(biāo)值落在區(qū)間內(nèi)的頻率;
(2)根據(jù)頻率分布直方圖求平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(3)若取這100件產(chǎn)品指標(biāo)的平均值,從這種產(chǎn)品(數(shù)量很大)中任取3個(gè),求至少有1個(gè)落在區(qū)間的概率.
參考數(shù)據(jù):,若,則;;.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P—ABCD中,PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=AP=4,AB=BC=2,N為AD的中點(diǎn).
(1)求異面直線PB與CD所成角的余弦值;
(2)點(diǎn)M在線段PC上且滿足,直線MN與平面PBC所成角的正弦值為,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年9月,臺風(fēng)“山竹”在我國多個(gè)省市登陸,造成直接經(jīng)濟(jì)損失達(dá)52億元.某青年志愿者組織調(diào)查了某地區(qū)的50個(gè)農(nóng)戶在該次臺風(fēng)中造成的直接經(jīng)濟(jì)損失,將收集的數(shù)據(jù)分成五組:,,,,(單位:元),得到如圖所示的頻率分布直方圖.
(1)試根據(jù)頻率分布直方圖估計(jì)該地區(qū)每個(gè)農(nóng)戶的平均損失(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表);
(2)臺風(fēng)后該青年志愿者與當(dāng)?shù)卣蛏鐣l(fā)出倡議,為該地區(qū)的農(nóng)戶捐款幫扶,現(xiàn)從這50戶并且損失超過4000元的農(nóng)戶中隨機(jī)抽取2戶進(jìn)行重點(diǎn)幫扶,設(shè)抽出損失超過8000元的農(nóng)戶數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面,,,,,二面角為,為的中點(diǎn),點(diǎn)在上,且
(1)求證:四邊形為直角梯形;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)論中
①若空間向量,,則是的充要條件;
②若是的必要不充分條件,則實(shí)數(shù)的取值范圍為;
③已知,為兩個(gè)不同平面,,為兩條直線,,,,,則“”是“”的充要條件;
④已知向量為平面的法向量,為直線的方向向量,則是的充要條件.
其中正確命題的序號有( )
A.②③B.②④C.②③④D.①②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在下列三個(gè)正方體中,均為所在棱的中點(diǎn),過作正方體的截面.在各正方體中,直線與平面的位置關(guān)系描述正確的是
A. 平面的有且只有①;平面的有且只有②③
B. 平面的有且只有②;平面的有且只有①
C. .平面的有且只有①;平面的有且只有②
D. 平面的有且只有②;平面的有且只有③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求的普通方程和極坐標(biāo)方程;
(2)若與相交于、兩點(diǎn),且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與拋物線交于兩點(diǎn),線段的垂直平分線與直線交于點(diǎn),當(dāng)為拋物線上位于線段下方(含)的動(dòng)點(diǎn)時(shí),則面積的最大值為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)為別為F1、F2,且過點(diǎn)和.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)如圖,點(diǎn)A為橢圓上一位于x軸上方的動(dòng)點(diǎn),AF2的延長線與橢圓交于點(diǎn)B,AO的延長線與橢圓交于點(diǎn)C,求△ABC面積的最大值,并寫出取到最大值時(shí)直線BC的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com