【題目】已知函數(shù)f(x)=4tanxsin( ﹣x)cos(x﹣ )﹣
(1)求f(x)的定義域與最小正周期;
(2)討論f(x)在區(qū)間[﹣ , ]上的單調(diào)性.

【答案】
(1)解:∵f(x)=4tanxsin( ﹣x)cos(x﹣ )﹣

∴x≠kπ+ ,即函數(shù)的定義域?yàn)閧x|x≠kπ+ ,k∈Z},

則f(x)=4tanxcosx( cosx+ sinx)﹣

=4sinx( cosx+ sinx)﹣

=2sinxcosx+2 sin2x﹣

=sin2x+ (1﹣cos2x)﹣

=sin2x﹣ cos2x

=2sin(2x﹣ ),

則函數(shù)的周期T=


(2)解:由2kπ﹣ ≤2x﹣ ≤2kπ+ ,k∈Z,

得kπ﹣ ≤x≤kπ+ ,k∈Z,即函數(shù)的增區(qū)間為[kπ﹣ ,kπ+ ],k∈Z,

當(dāng)k=0時(shí),增區(qū)間為[﹣ , ],k∈Z,

∵x∈[﹣ ],∴此時(shí)x∈[﹣ , ],

由2kπ+ ≤2x﹣ ≤2kπ+ ,k∈Z,

得kπ+ ≤x≤kπ+ ,k∈Z,即函數(shù)的減區(qū)間為[kπ+ ,kπ+ ],k∈Z,

當(dāng)k=﹣1時(shí),減區(qū)間為[﹣ ,﹣ ],k∈Z,

∵x∈[﹣ ],∴此時(shí)x∈[﹣ ,﹣ ],

即在區(qū)間[﹣ , ]上,函數(shù)的減區(qū)間為∈[﹣ ,﹣ ],增區(qū)間為[﹣ , ].


【解析】(1)利用三角函數(shù)的誘導(dǎo)公式以及兩角和差的余弦公式,結(jié)合三角函數(shù)的輔助角公式進(jìn)行化簡(jiǎn)求解即可.(2)利用三角函數(shù)的單調(diào)性進(jìn)行求解即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修 4-4]參數(shù)方程與極坐標(biāo)系

在平面直角坐標(biāo)系中,已知曲線 ,以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸正半軸為極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系.已知直線 .

(Ⅰ)試寫出直線的直角坐標(biāo)方程和曲線的參數(shù)方程;

(Ⅱ)在曲線上求一點(diǎn),使點(diǎn)到直線的距離最大,并求出此最大值.

[選修 4-5]不等式選講

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)等差數(shù)列{an}的公差為d,前n項(xiàng)和為Sn , 等比數(shù)列{bn}的公比為q,已知b1=a1 , b2=2,q=d,S10=100.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式
(2)當(dāng)d>1時(shí),記cn= ,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在R上的奇函數(shù)f(x),滿足f(1)=0,且在(0,+∞)上單調(diào)遞增,則xf(x)>0的解集為(
A.{x|x<﹣1或x>1}
B.{x|0<x<1或﹣1<x<0}
C.{x|0<x<1或x<﹣1}
D.{x|﹣1<x<0或x>1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線C:4x2﹣y2=4及直線l:y=kx﹣1
(1)求雙曲線C的漸近線方程及離心率;
(2)直線l與雙曲線C左右兩支各有一個(gè)公共點(diǎn),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax(a>0且a≠1)的圖象經(jīng)過(guò)點(diǎn)(2, ).
(1)比較f(2)與f(b2+2)的大;
(2)求函數(shù)g(x)=a (x≥0)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)拋物線y2=2x的焦點(diǎn)F作直線交拋物線于A,B兩點(diǎn),若|AB|= ,|AF|<|BF|,則|AF|為(
A.1
B.
C.2
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是從成都某中學(xué)參加高三體育考試的學(xué)生中抽出的40名學(xué)生體育成績(jī)(均為整數(shù))的頻率分布直方圖,該直方圖恰好缺少了成績(jī)?cè)趨^(qū)間[70,80)內(nèi)的圖形,根據(jù)圖形的信息,回答下列問(wèn)題:
(1)求成績(jī)?cè)趨^(qū)間[70,80)內(nèi)的頻率,并補(bǔ)全這個(gè)頻率分布直方圖,并估計(jì)這次考試的及格率(60分及以上為及格);
(2)從成績(jī)?cè)赱80,100]內(nèi)的學(xué)生中選出三人,記在90分以上(含90分)的人數(shù)為X,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中為自然對(duì)數(shù)的底數(shù).

(Ⅰ)討論函數(shù)的單調(diào)性及極值;

(Ⅱ)若不等式內(nèi)恒成立,求證:.

查看答案和解析>>

同步練習(xí)冊(cè)答案