【題目】經(jīng)銷商經(jīng)銷某種農(nóng)產(chǎn)品,在一個銷售季度內(nèi),每售出該產(chǎn)品獲利潤500元,未售出的產(chǎn)品,每虧損300元.根據(jù)歷史資料,得到銷售季度內(nèi)市場需求量的頻率分布直圖,如圖所示.經(jīng)銷商為下一個銷售季度購進了該農(nóng)產(chǎn)品.以()表示下一個銷售季度內(nèi)的市場需求量, (單位:元)表示下一個銷售季度內(nèi)經(jīng)銷該農(nóng)產(chǎn)品的利潤.
(Ⅰ)將表示為的函數(shù);
(Ⅱ)根據(jù)直方圖估計利潤不少于57000元的概率.
【答案】(Ⅰ)T=.(Ⅱ)下一個銷售季度的利潤T不少于57000元的概率的估計值為0.7.
【解析】試題分析:(I)由題意先分段寫出,當X∈[100,130)時,當X∈[130,150)時,和利潤值,最后利用分段函數(shù)的形式進行綜合即可.
(II)由(I)知,利潤T不少于57000元,當且僅當120≤X≤150.再由直方圖知需求量X∈[120,150]的頻率為0.7,利用樣本估計總體的方法得出下一個銷售季度的利潤T不少于57000元的概率的估計值.
解:(I)由題意得,當X∈[100,130)時,T=500X﹣300(130﹣X)=800X﹣39000,
當X∈[130,150]時,T=500×130=65000,
∴T=.
(II)由(I)知,利潤T不少于57000元,當且僅當120≤X≤150.
由直方圖知需求量X∈[120,150]的頻率為0.7,
所以下一個銷售季度的利潤T不少于57000元的概率的估計值為0.7.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知是矩形, , 分別為邊, 的中點, 與交于點,沿將矩形折起,設(shè), ,二面角的大小為.
(1)當時,求的值;
(2)點時,點是線段上一點,直線與平面所成角為.若,求線段的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,已知a=2,b=3,cosC= .
(1)求△ABC的面積;
(2)求sin(C﹣A)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣2|﹣|2x﹣a|,a∈R.
(1)當a=3時,解不等式f(x)>0;
(2)當x∈(﹣∞,2)時,f(x)<0恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,莖葉圖記錄了甲、乙兩組各四名同學(xué)完成某道數(shù)學(xué)題(滿分12分)的得分情況.乙組某個數(shù)據(jù)的個位數(shù)模糊,記為x,已知甲、乙兩組的平均成績相同.
(1)求x的值,并判斷哪組學(xué)生成績更穩(wěn)定;
(2)在甲、乙兩組中各抽出一名同學(xué),求這兩名同學(xué)的得分之和低于20分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果一個實數(shù)數(shù)列{an}滿足條件: (d為常數(shù),n∈N*),則稱這一數(shù)列“偽等差數(shù)列”,d稱為“偽公差”.給出下列關(guān)于某個偽等差數(shù)列{an}的結(jié)論:①對于任意的首項a1 , 若d<0,則這一數(shù)列必為有窮數(shù)列;②當d>0,a1>0時,這一數(shù)列必為單調(diào)遞增數(shù)列;③這一數(shù)列可以是一個周期數(shù)列;④若這一數(shù)列的首項為1,偽公差為3,- 可以是這一數(shù)列中的一項;n∈N*⑤若這一數(shù)列的首項為0,第三項為﹣1,則這一數(shù)列的偽公差可以是 .其中正確的結(jié)論是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若數(shù)列{an}的前n項和Sn滿足Sn=2an+n.
(Ⅰ)求證:數(shù)列{an﹣1}是等比數(shù)列;
(Ⅱ)記bn= ,求數(shù)列{bn}的前n項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , 且a1=1,an+1= Sn(n=1,2,3,…).則數(shù)列{an}的通項公式為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓的中心在原點,長軸左、右端點、在軸上,橢圓的短軸為,且、的離心率都為,直線, 與交于兩點,與交于兩點,這四點縱坐標從大到小依次為、、、.
(1)設(shè),求與的比值;
(2)若存在直線,使得,求兩橢圓離心率的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com