【題目】已知函數(shù)f(x)=ax2﹣blnx在點(1,f(1))處的切線為y=1.
(Ⅰ)求實數(shù)a,b的值;
(Ⅱ)是否存在實數(shù)m,當(dāng)x∈(0,1]時,函數(shù)g(x)=f(x)﹣x2+m(x﹣1)的最小值為0,若存在,求出m的取值范圍;若不存在,說明理由;
(Ⅲ)若0<x1<x2 , 求證: <2x2

【答案】解:(Ⅰ)由f(x)=ax2﹣blnx,得:
,
∵函數(shù)f(x)=ax2﹣blnx在點(1,f(1))處的切線為y=1,
,解得a=1,b=2;
(II)由(Ⅰ)知,f(x)=x2﹣2lnx,
∴g(x)=f(x)﹣x2+m(x﹣1)=m(x﹣1)﹣2lnx,x∈(0,1],
,
①當(dāng)m≤0時,g′(x)<0,
∴g(x)在(0,1]上單調(diào)遞減,
∴g(x)min=g(1)=0.
②當(dāng)0<m≤2時,
∴g(x)在(0,1]上單調(diào)遞減,
∴g(x)min=g(1)=0.
③當(dāng)m>2時,g′(x)<0在 上恒成立,g′(x)>0在 上恒成立,
∴g(x)在 上單調(diào)遞減,在 上單調(diào)遞增.

∴g(x)min≠0.
綜上所述,存在m滿足題意,其范圍為(﹣∞,2];
(III)證明:由(II)知,m=1時,g(x)=x﹣1﹣2lnx在(0,1)上單調(diào)遞減,
∴x∈(0,1)時,g(x)>g(1)=0,
即x﹣1>2lnx.
∵0<x1<x2
∴0< ,
,

∵lnx2>lnx1 ,

【解析】(Ⅰ)求出原函數(shù)的導(dǎo)函數(shù),由f(1)=1且f′(1)=0聯(lián)立求得a,b的值;(Ⅱ)把(Ⅰ)中求得的f(x)的解析式代入g(x)=f(x)﹣x2+m(x﹣1),求其導(dǎo)函數(shù),然后對m分類分析導(dǎo)函數(shù)的符號,得到原函數(shù)的單調(diào)性,求出最小值.特別當(dāng)m>2時,g(x)在 上單調(diào)遞減,在 上單調(diào)遞增,求出g(x)的最小值小于0.則m的取值范圍可求;(Ⅲ)由(II)知,m=1時,g(x)=x﹣1﹣2lnx在(0,1)上單調(diào)遞減,得到x﹣1>2lnx,由0<x1<x2得到
0< ,代入x﹣1>2lnx證得答案.
【考點精析】本題主要考查了函數(shù)的最大(小)值與導(dǎo)數(shù)的相關(guān)知識點,需要掌握求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內(nèi)的極值;(2)將函數(shù)的各極值與端點處的函數(shù)值,比較,其中最大的是一個最大值,最小的是最小值才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)員工500人參加學(xué)雷鋒志愿活動,按年齡分組:第1[25,30),第2[30,35),第3[35,40),第4[40,45),第5[45,50],得到的頻率分布直方圖如圖所示.

(1)上表是年齡的頻數(shù)分布表,求正整數(shù)的值;

(2)現(xiàn)在要從年齡較小的第1,2,3組中用分層抽樣的方法抽取6人,年齡在第1,2,3組的人數(shù)分別是多少?

(3)(2)的前提下,從這6人中隨機抽取2人參加社區(qū)宣傳交流活動,求至少有1人年齡在第3組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知奇函數(shù)f(x)=的定義域為R,其中g(x)為指數(shù)函數(shù),且過定點(2,9).

(1)求函數(shù)f(x)的解析式;

(2)若對任意的t∈[0,5],不等式f(t2+2tk)+f(-2t2+2t-5)>0恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a>0,b>0,函數(shù)f(x)=|x+a|+|2x﹣b|的最小值為1.
(1)求證:2a+b=2;
(2)若a+2b≥tab恒成立,求實數(shù)t的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】二戰(zhàn)中盟軍為了知道德國“虎式”重型坦克的數(shù)量,采用了兩種方法,一種是傳統(tǒng)的情報竊取,一種是用統(tǒng)計學(xué)的方法進行估計,統(tǒng)計學(xué)的方法最后被證實比傳統(tǒng)的情報收集更精確,德國人在生產(chǎn)坦克時把坦克從1開始進行了連續(xù)編號,在戰(zhàn)爭期間盟軍把繳獲的“虎式”坦克的編號進行記錄,并計算出這些編號的平均值為675.5,假設(shè)繳獲的坦克代表了所有坦克的一個隨機樣本,則利用你所學(xué)過的統(tǒng)計知識估計德國共制造“虎式”坦克大約有(
A.1050輛
B.1350輛
C.1650輛
D.1950輛

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓 的左頂點為,點是橢圓上的兩個動點,若直線 的斜率乘積為定值,則動直線恒過定點的坐標(biāo)為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓M的圓心在直線上,且經(jīng)過點A-3,0),B1,2).

(1)求圓M的方程;

2)直線與圓M相切,且y軸上的截距是x軸上截距的兩倍,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】旅游社為某旅游團包飛機去旅游,其中旅行社的包機費為15 000元.旅游團中每人的飛機票按以下方式與旅行社結(jié)算:若旅游團人數(shù)在30人或30人以下,飛機票每張收費900元;若旅游團人數(shù)多于30,則給予優(yōu)惠,每多1,機票費每張減少10但旅游團人數(shù)最多為75人.

(1)寫出飛機票的價格關(guān)于旅游團人數(shù)的函數(shù);

(2)旅游團人數(shù)為多少時,旅行社可獲得最大利潤?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,以O(shè)為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C:ρ2﹣4ρcosθ+1=0,直線l: (t為參數(shù),0≤α<π).
(1)求曲線C的參數(shù)方程;
(2)若直線l與曲線C相切,求直線l的傾斜角及切點坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案