【題目】一個透明密閉的正方體容器中,恰好盛有該容器一半容積的水,任意轉(zhuǎn)動這個正方體,則水面在容器中的形狀可以是:(1)三角形;(2)長方形;(3)正方形;(4)正六邊形.其中正確的結(jié)論是____________.(把你認為正確的序號都填上)

【答案】2)(3)(4

【解析】

逐一判斷形狀即可.

試題解:正方體容器中盛有一半容積的水,無論怎樣轉(zhuǎn)動,其水面總是過正方體的中心.三角形截面不過正方體的中心,故(1)不正確;

過正方體的一對棱和中心可作一截面,截面形狀為長方形,故(2)正確;

過正方體四條互相平行的棱的中點得截面形狀為正方形,該截面過正方體的中心,故(3)正確;

過正方體一面上相鄰兩邊的中點以及正方體的中心得截面形狀為正六邊形,故(4)正確.

故答案為(2)(3)(4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年3月3日至20日中華人民共和國第十三屆全國人民代表大會第一次會議和中國人民政治協(xié)商會議第十三屆全國委員會第一次會議在北京勝利召開,兩會是年度中國政治生活中的一件大事,受到了舉國上下和全世界的廣泛關(guān)注.為及時宣傳國家政策,貫徹兩會精神,某校舉行了全國兩會知識競賽,為了解本次競賽成績情況,隨機抽取了部分學(xué)生的成績(得分均為整數(shù),滿分分,最低分不低于分)進行統(tǒng)計,得出頻率分布表如下:

組號

分組

頻數(shù)

頻率

第1組

第2組

第3組

第4組

第5組

合計

(1)求表中、、的值;

(2)若從成績較好的第、組中用分層抽樣的方法抽取人擔(dān)任兩會知識宣傳員,再從這人中隨機選出人負責(zé)整理兩會相關(guān)材料,求這人中至少有人來自第組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等比數(shù)列的首項是1,公比為3,等差數(shù)列的首項是,公差為1,把中的各項按如下規(guī)則依次插入到的每相鄰兩項之間,構(gòu)成新數(shù)列,,,,,,…,即在兩項之間依次插入個項,則__________.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的焦距為,且,圓軸交于點,為橢圓上的動點,,面積最大值為.

(1)求圓與橢圓的方程;

(2)圓的切線交橢圓于點,,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面幾何中,研究三角形內(nèi)任意一點與三邊的關(guān)系時,有真命題:邊長為的正三角形內(nèi)任意一點到各邊的距離之和是定值。類比上述命題,請寫出關(guān)于正四面體內(nèi)任意一點與四個面的關(guān)系的一個真命題,并給出證明。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的焦距為,且,圓軸交于點,,為橢圓上的動點,面積最大值為.

(1)求圓與橢圓的方程;

(2)圓的切線交橢圓于點,,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)記函數(shù)的極值點為,若,且,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】運動健康已成為大家越來越關(guān)心的話題,某公司開發(fā)的一個類似計步數(shù)據(jù)庫的公眾號.手機用戶可以通過關(guān)注該公眾號查看自己每天行走的步數(shù),同時也可以和好友進行運動量的PK和點贊.現(xiàn)從張華的好友中隨機選取40人(男、女各20人),記錄他們某一天行走的步數(shù),并將數(shù)據(jù)整理如表:

步數(shù)

性別

02000

20015000

50018000

800110000

10000

1

2

4

7

6

0

3

9

6

2

1)若某人一天行走的步數(shù)超過8000步被評定為“積極型”,否則被評定為“懈怠型”,根據(jù)題意完成下列2×2列聯(lián)表,并據(jù)此判斷能否有90%的把握認為男、女的“評定類型”有差異?

積極型

懈怠型

總計

總計

2)在張華的這40位好友中,從該天行走的步數(shù)不超過5000步的人中隨機抽取2人,設(shè)抽取的女性有X人,求X=1時的概率.

參考公式與數(shù)據(jù):

PK2k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

K2=,其中n=a+b+c+d

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,一條小河岸邊有相距兩個村莊(村莊視為岸邊上兩點),在小河另一側(cè)有一集鎮(zhèn)(集鎮(zhèn)視為點),到岸邊的距離,河寬,通過測量可知,的正切值之比為.當(dāng)?shù)卣疄榉奖愦迕癯鲂,擬在小河上建一座橋分別為兩岸上的點,且垂直河岸,的左側(cè)),建橋要求:兩村所有人到集鎮(zhèn)所走距離之和最短,已知兩村的人口數(shù)分別是人、人,假設(shè)一年中每人去集鎮(zhèn)的次數(shù)均為次.設(shè).(小河河岸視為兩條平行直線)

(1)記為一年中兩村所有人到集鎮(zhèn)所走距離之和,試用表示;

(2)試確定的余弦值,使得最小,從而符合建橋要求.

查看答案和解析>>

同步練習(xí)冊答案