【題目】已知點在橢圓: 上, 是橢圓的一個焦點.
(Ⅰ)求橢圓的方程;
(Ⅱ)橢圓C上不與點重合的兩點, 關(guān)于原點O對稱,直線, 分別交軸于, 兩點.求證:以為直徑的圓被直線截得的弦長是定值.
【答案】(Ⅰ).(Ⅱ)見解析.
【解析】試題分析:(Ⅰ)依題意,得到,利用定義得到,即可求解橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè), ,根據(jù)直線方程,求解的坐標(biāo),可得,利用 ,求得的值,即可得到弦長為定值.
試題解析:
(Ⅰ)依題意,橢圓的另一個焦點為,且.
因為,
所以, ,
所以橢圓的方程為.
(Ⅱ)證明:由題意可知, 兩點與點不重合.
因為, 兩點關(guān)于原點對稱,
所以設(shè), , .
設(shè)以為直徑的圓與直線交于兩點,
所以.
直線: .
當(dāng)時, ,所以.
直線: .
當(dāng)時, ,所以.
所以, ,
因為,所以,
所以.
因為,即, ,
所以,所以.
所以, , 所以.
所以以為直徑的圓被直線截得的弦長是定值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,直線與圓相交于不同的兩點,點是線段的中點。
(1)求直線的方程;
(2)是否存在與直線平行的直線,使得與與圓相交于不同的兩點,不經(jīng)過點,且的面積最大?若存在,求出的方程及對應(yīng)的的面積S;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)當(dāng)時,求曲線在處的切線方程;
(2)當(dāng)時,判斷 在上的單調(diào)性,并說明理由;
(3)當(dāng)時,求證: ,都有
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點在橢圓: 上, 是橢圓的一個焦點.
(Ⅰ)求橢圓的方程;
(Ⅱ)橢圓C上不與點重合的兩點, 關(guān)于原點O對稱,直線, 分別交軸于, 兩點.求證:以為直徑的圓被直線截得的弦長是定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】濟(jì)南新舊動能轉(zhuǎn)換先行區(qū),承載著濟(jì)南從“大明湖時代”邁向“黃河時代”的夢想,肩負(fù)著山東省新舊動能轉(zhuǎn)換先行先試的重任,是全國新舊動能轉(zhuǎn)換的先行區(qū).先行區(qū)將以“結(jié)構(gòu)優(yōu)化質(zhì)量提升”為目標(biāo),通過開放平臺匯聚創(chuàng)新要素,堅持綠色循環(huán)保障持續(xù)發(fā)展,建設(shè)現(xiàn)代綠色智慧新城.2019年某智能機器人制造企業(yè)有意落戶先行區(qū),對市場進(jìn)行了可行性分析,如果全年固定成本共需2000(萬元),每年生產(chǎn)機器人(百個),需另投人成本(萬元),且,由市場調(diào)研知,每個機器人售價6萬元,且全年生產(chǎn)的機器人當(dāng)年能全部銷售完.
(1)求年利潤(萬元)關(guān)于年產(chǎn)量(百個)的函數(shù)關(guān)系式;(利潤=銷售額-成本)
(2)該企業(yè)決定:當(dāng)企業(yè)年最大利潤超過2000(萬元)時,才選擇落戶新舊動能轉(zhuǎn)換先行區(qū).請問該企業(yè)能否落戶先行區(qū),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某家庭進(jìn)行理財投資,根據(jù)長期收益率市場預(yù)測,投資債券等穩(wěn)健型產(chǎn)品的收益與投資額成正比,且投資1萬元時的收益為萬元,投資股票等風(fēng)險型產(chǎn)品的收益與投資額的算術(shù)平方根成正比,且投資1萬元時的收益為0.5萬元,
(1)分別寫出兩種產(chǎn)品的收益與投資額的函數(shù)關(guān)系;
(2)該家庭現(xiàn)有20萬元資金,全部用于理財投資,問:怎樣分配資金能使投資獲得最大收益,其最大收益為多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù).
(1)若關(guān)于的方程的解集中恰有一個元素,求的值;
(2)設(shè),若對任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)高考實行新方案,規(guī)定:語文、數(shù)學(xué)和英語是考生的必考科目,考生還須從物理、化學(xué)、生物、歷史、地理和政治六個科目中選取三個科目作為選考科目,若一名學(xué)生從六個科目中選出了三個科目作為選考科目,則稱該學(xué)生的選考方案確定;否則,稱該學(xué)生選考方案待確定.例如,學(xué)生甲選擇“物理、化學(xué)和生物”三個選考科目,則學(xué)生甲的選考方案確定,“物理、化學(xué)和生物”為其選考方案.
某學(xué)校為了了解高一年級420名學(xué)生選考科目的意向,隨機選取30名學(xué)生進(jìn)行了一次調(diào)查,統(tǒng)計選考科目人數(shù)如下表:
性別 | 選考方案確定情況 | 物理 | 化學(xué) | 生物 | 歷史 | 地理 | 政治 |
男生 | 選考方案確定的有8人 | 8 | 8 | 4 | 2 | 1 | 1 |
選考方案待確定的有6人 | 4 | 3 | 0 | 1 | 0 | 0 | |
女生 | 選考方案確定的有10人 | 8 | 9 | 6 | 3 | 3 | 1 |
選考方案待確定的有6人 | 5 | 4 | 1 | 0 | 0 | 1 |
(Ⅰ)估計該學(xué)校高一年級選考方案確定的學(xué)生中選考生物的學(xué)生有多少人?
(Ⅱ)假設(shè)男生、女生選擇選考科目是相互獨立的.從選考方案確定的8位男生隨機選出1人,從選考方案確定的10位女生中隨機選出1人,試求該男生和該女生的選考方案中都含有歷史科目的概率;
(Ⅲ)從選考方案確定的8名男生隨機選出2名,設(shè)隨機變量兩名男生選考方案相同時,兩名男生選考方案不同時,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知圓的方程為,圓的方程為,動圓與圓內(nèi)切且與圓外切.
(1)求動圓圓心的軌跡的方程;
(2)已知與為平面內(nèi)的兩個定點,過點的直線與軌跡交于,兩點,求四邊形面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com