【題目】我們把離心率e= 的雙曲線 =1(a>0,b>0)稱為黃金雙曲線.如圖是雙曲線 =1(a>0,b>0,c= )的圖象,給出以下幾個說法: ①若b2=ac,則該雙曲線是黃金雙曲線;
②若F1 , F2為左右焦點(diǎn),A1 , A2為左右頂點(diǎn),B1(0,b),B2(0,﹣b)且∠F1B1A2=90°,則該雙曲線是黃金雙曲線;
③若MN經(jīng)過右焦點(diǎn)F2且MN⊥F1F2 , ∠MON=90°,則該雙曲線是黃金雙曲線.
其中正確命題的序號為

【答案】①②③
【解析】解:①b2=ac,則e= = = , ∴e2﹣e﹣1=0,解得e= ,或e= (舍),
∴該雙曲線是黃金雙曲線,故①正確;
②如圖,F(xiàn)1 , F2為左右焦點(diǎn),A1 , A2為左右頂點(diǎn),
B1(0,b),B2(0,﹣b),且∠F1B1A2=90°,
∴B1F12+B1A22=A2F12 , 即b2+2c2=(a+c)2
整理,得b2=ac,由①知該雙曲線是黃金雙曲線,故②正確;
③如圖,MN經(jīng)過右焦點(diǎn)F2且MN⊥F1F2 , ∠MON=90°,
∴NF2=OF2 , ∴ =c,∴b2=ac,
由①知該雙曲線是黃金雙曲線,故③正確.
所以答案是:①②③.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(sin(2x+ ),sinx), =(1,sinx),f(x)=
(Ⅰ)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)在△ABC中,a,b,c分別是角A,B,C的對邊,a=2 , ,若 sin(A+C)=2cosC,求b的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A、B兩點(diǎn)分別在兩條互相垂直的直線y=2x和x+ay=0上,且線段AB的中點(diǎn)為P(0, ),則直線AB的方程為( )
A.y=- x+5
B.y= x-5
C.y= x+5
D.y=- x-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正方體ABCD﹣A1B1C1D1中,如圖E、F分別是BB1 , CD的中點(diǎn),
(1)求證:D1F⊥AE;
(2)求直線EF與CB1所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校從高二年級學(xué)生中隨機(jī)抽取40名學(xué)生,將他們的期中考試數(shù)學(xué)成績(滿分100分,成績均為不低于40分的整數(shù))分成六段:[40,50),[50,60),[90,100]后得到如圖的頻率分布直方圖.
(1)求圖中實數(shù)a的值;
(2)若該校高二年級共有學(xué)生640人,試估計該校高二年級期中考試數(shù)學(xué)成績不低于60分的人數(shù);
(3)若從數(shù)學(xué)成績在[40,50)與[90,100]兩個分?jǐn)?shù)段內(nèi)的學(xué)生中隨機(jī)選取兩名學(xué)生,求這兩名學(xué)生的數(shù)學(xué)成績之差的絕對值不大于10的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l1:(a-1)xyb=0,l2axby-4=0,求滿足下列條件的ab的值.
(1)l1l2 , 且l1過點(diǎn)(1,1);
(2)l1l2 , 且l2在第一象限內(nèi)與兩坐標(biāo)軸圍成的三角形的面積為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若a>0,b>0,且函數(shù)f(x)=4x3﹣ax2﹣2bx在x=1處有極值,則 + 的最小值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于函數(shù)f(x)=5sin3x+5 cos3x,下列說法正確的是(
A.函數(shù)f(x)關(guān)于x= π對稱
B.函數(shù)f(x)向左平移 個單位后是奇函數(shù)
C.函數(shù)f(x)關(guān)于點(diǎn)( ,0)中心對稱
D.函數(shù)f(x)在區(qū)間[0, ]上單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)餐飲中心為了了解新生的飲食習(xí)慣,利用簡單隨機(jī)抽樣的方法在全校一年級學(xué)生中進(jìn)行了抽樣調(diào)查,調(diào)查結(jié)果如表所示:

喜歡甜品

不喜歡甜品

合計

南方學(xué)生

60

20

80

北方學(xué)生

10

10

20

合計

70

30

100


(1)根據(jù)表中數(shù)據(jù),問是否有95%的把握認(rèn)為“南方學(xué)生和北方學(xué)生在選用甜品的飲食習(xí)慣方面有差異”;
(2)根據(jù)(1)的結(jié)論,你能否提出更好的調(diào)查方法來了解該校大學(xué)新生的飲食習(xí)慣,說明理由.

查看答案和解析>>

同步練習(xí)冊答案