【題目】在四棱錐中,平面ABCD,是正三角形,AC與BD的交點(diǎn)為M,又,,點(diǎn)N是CD中點(diǎn).
(1)求證:平面PAD;
(2)求點(diǎn)M到平面PBC的距離.
【答案】(1)證明見(jiàn)解析;(2)
【解析】
(1)推導(dǎo)出△ABD≌△BCD,從而MN∥AD,由此能證明MN∥平面PAD.
(2)設(shè)M到平面PBC的距離為h,由VM-PBC=VP-BMC,能求出點(diǎn)M到平面PBC的距離.
(1)是正三角形,所以,又,
∴BD所在直線為線段AC的垂直平分線,
所以M為AC的中點(diǎn),
又點(diǎn)N是CD中點(diǎn),所以,
又平面PAD,平面PAD,
所以平面PAD;
(2)解:設(shè)M到平面PBC的距離為h,在中,,
所以
在中,,所以,
在中,,,,所以.
由.即,
解得.
所以點(diǎn)M到平面PBC的距離為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是偶函數(shù).
(1)求的值;
(2)證明:對(duì)任意實(shí)數(shù),函數(shù)的圖象與直線最多只有一個(gè)交點(diǎn);
(3)設(shè)若函數(shù)的圖象有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為、,離心率為,點(diǎn)是橢圓上的一個(gè)動(dòng)點(diǎn),且面積的最大值為.
(1)求橢圓的方程;
(2)過(guò)點(diǎn)作直線交橢圓于、兩點(diǎn),過(guò)點(diǎn)作直線的垂線交圓:于另一點(diǎn).若的面積為3,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下表是某城市在2019年1月份至10月份各月最低溫與最高溫(℃)的數(shù)據(jù)表,已知該城市的各月最低溫與最高溫具有相關(guān)關(guān)系,根據(jù)該表,則下列結(jié)論錯(cuò)誤的是( )
月份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
最高溫 | 5 | 9 | 9 | 11 | 17 | 24 | 27 | 30 | 31 | 21 |
最低溫 | 1 | 7 | 17 | 19 | 23 | 25 | 10 |
A.最低溫與最高溫為正相關(guān)
B.每月最低溫與最高溫的平均值在前8個(gè)月逐月增加
C.月溫差(最高溫減最低溫)的最大值出現(xiàn)在1月
D.1至4月溫差(最高溫減最低溫)相對(duì)于7至10月,波動(dòng)性更大
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)有極值,且導(dǎo)函數(shù)的極值點(diǎn)是的零點(diǎn),給出命題:①;②若,則存在,使得;③與所有極值之和一定小于0;④若,且是曲線的一條切線,則的取值范圍是.則以上命題正確序號(hào)是_____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于函數(shù),若存在實(shí)數(shù),使成立,則稱為的不動(dòng)點(diǎn).
(1)當(dāng),時(shí),求的不動(dòng)點(diǎn);
(2)若對(duì)于任何實(shí)數(shù),函數(shù)恒有兩相異的不動(dòng)點(diǎn),求實(shí)數(shù)的取值范圍;
(3)在(2)的條件下,若的圖象上、兩點(diǎn)的橫坐標(biāo)是函數(shù)的不動(dòng)點(diǎn),且直線是線段的垂直平分線,求實(shí)數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)若,求曲線與的交點(diǎn)坐標(biāo);
(2)過(guò)曲線上任一點(diǎn)作與夾角為30°的直線,交于點(diǎn),且的最大值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)在圓 上,點(diǎn)在圓 上,則下列說(shuō)法錯(cuò)誤的是
A. 的取值范圍為
B. 取值范圍為
C. 的取值范圍為
D. 若,則實(shí)數(shù)的取值范圍為
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com