【題目】已知是偶函數(shù).
(1)求的值;
(2)證明:對任意實數(shù),函數(shù)的圖象與直線最多只有一個交點;
(3)設若函數(shù)的圖象有且只有一個公共點,求實數(shù)的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】冠狀病毒是一個大型病毒家族,己知可引起感冒以及中東呼吸綜合征()和嚴重急性呼吸綜合征()等較嚴重疾病.而今年出現(xiàn)在湖北武漢的新型冠狀病毒()是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株.人感染了新型冠狀病毒后常見體征有呼吸道癥狀、發(fā)熱、咳嗽、氣促和呼吸困難等.在較嚴重病例中,感染可導致肺炎、嚴重急性呼吸綜合征、腎衰竭,甚至死亡.
某醫(yī)院為篩查冠狀病毒,需要檢驗血液是否為陽性,現(xiàn)有n()份血液樣本,有以下兩種檢驗方式:
方式一:逐份檢驗,則需要檢驗n次.
方式二:混合檢驗,將其中k(且)份血液樣本分別取樣混合在一起檢驗.
若檢驗結果為陰性,這k份的血液全為陰性,因而這k份血液樣本只要檢驗一次就夠了,如果檢驗結果為陽性,為了明確這k份血液究竟哪幾份為陽性,就要對這k份再逐份檢驗,此時這k份血液的檢驗次數(shù)總共為.
假設在接受檢驗的血液樣本中,每份樣本的檢驗結果是陽性還是陰性都是獨立的,且每份樣本是陽性結果的概率為p().現(xiàn)取其中k(且)份血液樣本,記采用逐份檢驗方式,樣本需要檢驗的總次數(shù)為,采用混合檢驗方式,樣本需要檢驗的總次數(shù)為.
(1)若,試求p關于k的函數(shù)關系式;
(2)若p與干擾素計量相關,其中()是不同的正實數(shù),
滿足且()都有成立.
(i)求證:數(shù)列等比數(shù)列;
(ii)當時,采用混合檢驗方式可以使得樣本需要檢驗的總次數(shù)的期望值比逐份檢驗的總次數(shù)的期望值更少,求k的最大值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】黨的十九大報告明確指出要堅決打贏脫貧攻堅戰(zhàn),讓貧困人口和貧困地區(qū)同全國一道進入全面小康社會,要動員全黨全國全社會力量,堅持精準扶貧、精準脫貧,確保到2020年我國現(xiàn)行標準下農村貧困人口實現(xiàn)脫貧.現(xiàn)有扶貧工作組到某山區(qū)貧困村實施脫貧工作.經(jīng)摸底排查,該村現(xiàn)有貧困農戶100戶,他們均從事水果種植,2017年底該村平均每戶年純收入為1萬元,扶貧工作組一方面請有關專家對水果進行品種改良,提高產(chǎn)量;另一方面,抽出部分農戶從事水果包裝、銷售工作,其戶數(shù)必須小于種植的戶數(shù).從2018年初開始,若該村抽出戶(,)從事水果包裝、銷售.經(jīng)測算,剩下從事水果種植農戶的年純收入每戶平均比上一年提高,而從事包裝銷售農戶的年純收入每戶平均為萬元.(參考數(shù)據(jù):,,,).
(1)至2018年底,該村每戶年均純收入能否達到1.32萬元?若能,請求出從事包裝、銷售的戶數(shù);若不能,請說明理由;
(2)至2020年底,為使從事水果種植農戶能實現(xiàn)脫貧(即每戶(水果種植農戶)年均純收入不低于1.6萬元),至少要抽出多少戶從事包裝、銷售工作?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某快遞公司收取快遞費用的標準是:重量不超過的包裹收費10元;重量超過的包裹,除收費10元之外,超過的部分,每超出(不足,按計算)需要再收費5元.該公司近60天每天攬件數(shù)量的頻率分布直方圖如下圖所示(同一組數(shù)據(jù)用該區(qū)間的中點值作代表).
(1)求這60天每天包裹數(shù)量的平均值和中位數(shù);
(2)該公司從收取的每件快遞的費用中抽取5元作為前臺工作人員的工資和公司利潤,剩余的作為其他費用.已知公司前臺有工作人員3人,每人每天工資100元,以樣本估計總體,試估計該公司每天的利潤有多少元?
(3)小明打算將四件禮物隨機分成兩個包裹寄出,且每個包裹重量都不超過,求他支付的快遞費為45元的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中,為自然對數(shù)的底數(shù). 設是的導函數(shù).
(Ⅰ)若時,函數(shù)在處的切線經(jīng)過點,求的值;
(Ⅱ)求函數(shù)在區(qū)間上的單調區(qū)間;
(Ⅲ)若,函數(shù)在區(qū)間內有零點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知平行四邊形中,,,為邊的中點,將 沿直線翻折成.若為線段的中點,則在翻折過程中,有下列三個命題:
①線段的長是定值;
②存在某個位置,使;
③存在某個位置,使平面.
其中正確的命題有______. (填寫所有正確命題的編號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】斐波那契數(shù)列0,1,1,2,3,5,8,13,…,是意大利數(shù)學家列昂納多·斐波那契發(fā)明的,定義如下:,,.某同學設計了一個求解斐波那契數(shù)列前項和的程序框圖,如圖所示,若輸出的值為232,則處理框和判斷框中應該分別填入( )
A.,B.,
C.,D.,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在四棱錐中,平面ABCD,是正三角形,AC與BD的交點為M,又,,點N是CD中點.
(1)求證:平面PAD;
(2)求點M到平面PBC的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com