【題目】設(shè)橢圓C: =1(a>b>0)過點(diǎn)(0,4),離心率為 .
(1)求橢圓C的方程;
(2)求過點(diǎn)(3,0)且斜率為 的直線被橢圓所截得線段的中點(diǎn)坐標(biāo).
【答案】
(1)解:將點(diǎn)(0,4)代入橢圓C的方程得 =1,∴b=4,
由e= = ,得1﹣ = ,∴a=5,
∴橢圓C的方程為 =1
(2)解:過點(diǎn)(3,0)且斜率為 的直線為y= (x﹣3),
設(shè)直線與橢圓C的交點(diǎn)為A(x1,y1),B(x2,y2),
將直線方程y= (x﹣3)代入橢圓C方程,整理得x2﹣3x﹣8=0,
由韋達(dá)定理得x1+x2=3,
y1+y2= (x1﹣3)+ (x2﹣3)= (x1+x2)﹣ =﹣ .
由中點(diǎn)坐標(biāo)公式AB中點(diǎn)橫坐標(biāo)為 ,縱坐標(biāo)為﹣ ,
∴所截線段的中點(diǎn)坐標(biāo)為( ,﹣ )
【解析】(1)橢圓C: =1(a>b>0)過點(diǎn)(0,4),可求b,利用離心率為 ,求出a,即可得到橢圓C的方程;(2)過點(diǎn)(3,0)且斜率為 的直線為y= (x﹣3),代入橢圓C方程,整理,利用韋達(dá)定理,確定線段的中點(diǎn)坐標(biāo).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解小學(xué)生近視情況,決定隨機(jī)從同一個(gè)學(xué)校二年級(jí)到四年級(jí)的學(xué)生中抽取60名學(xué)生檢測(cè)視力,其中二年級(jí)共有學(xué)生2400人,三年級(jí)共有學(xué)生2000人,四年級(jí)共有學(xué)生1600人,則應(yīng)從三年級(jí)學(xué)生中抽取的學(xué)生人數(shù)為( 。
A.24
B.20
C.16
D.18
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)為A(﹣3,0),B(2,1),C(﹣2,3),求:
(Ⅰ)BC邊上高線AH所在直線的方程;
(Ⅱ)若直線l過點(diǎn)B且橫、縱截距互為相反數(shù),求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓中心在原點(diǎn),焦點(diǎn)在軸上, 、分別為上、下焦點(diǎn),橢圓的離心率為, 為橢圓上一點(diǎn)且.
(1)若的面積為,求橢圓的標(biāo)準(zhǔn)方程;
(2)若的延長(zhǎng)線與橢圓另一交點(diǎn)為,以為直徑的圓過點(diǎn), 為橢圓上動(dòng)點(diǎn),求的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的圖象在處的切線方程;
(2)若函數(shù)在定義域上為單調(diào)增函數(shù).
①求最大整數(shù)值;
②證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣(2m+1)x+2m(m∈R).
(1)當(dāng)m=1時(shí),解關(guān)于x的不等式xf(x)≤0;
(2)解關(guān)于x的不等式f(x)>0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在等比數(shù)列{an}中,a1=2,a4=16
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令 ,n∈N* , 求數(shù)列{bn}的前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某校舉行的數(shù)學(xué)競(jìng)賽中,全體參賽學(xué)生的競(jìng)賽成績(jī)近似地服從正態(tài)分布N(70,100).已知成績(jī)?cè)?0分以上的學(xué)生有12人.
(1)試問此次參賽學(xué)生的總數(shù)約為多少人?
(2)若成績(jī)?cè)?0分以上(含80分)為優(yōu),試問此次競(jìng)賽成績(jī)?yōu)閮?yōu)的學(xué)生約為多少人?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com