【題目】如圖,在三棱柱中,平面,點(diǎn)是的中點(diǎn),,,.
(1)求證:平面平面;
(2)求點(diǎn)到平面的距離.
【答案】(1)證明見解析(2)
【解析】
(1)通過證明證得平面,由此證得平面平面.
(2)解法一:利用等體積法計(jì)算出點(diǎn)到平面的距離;解法二:在平面內(nèi),過作,證得就是點(diǎn)到平面的距離,利用等面積法求得點(diǎn)到平面的距離.
(1)證明:∵平面,平面,∴,
∵,是的的中點(diǎn),∴,
又,∴平面,
∵平面,∴平面平面;
(2)解法一∵平面,∴是三棱錐的高,
且,
由(1)及已知得是腰長為1的等腰直角三角形,
,
∴,
又,所以,
由(1)得平面,平面,∴,
∴,設(shè)點(diǎn)到平面的距離為,
由,得,
∴因此,點(diǎn)到平面的距離為.
解法二:由(1)平面平面,平面平面,
在平面內(nèi),過作,則平面,故就是點(diǎn)到平面的距離,
∵平面,∴在中,.
利用等面積得,
因此,點(diǎn)到平面的距離為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的個(gè)數(shù)為( )
①命題“中,若,則”的逆命題是真命題
②若命題,則
③“命題為真命題”是“命題為假命題”的充要條件
④設(shè)均為非零向量,則“”是“與的夾角為銳角”的必要不充分條件
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為,過拋物線上一點(diǎn)作拋物線的切線交軸于點(diǎn),交軸于點(diǎn),當(dāng)時(shí),.
(1)判斷的形狀,并求拋物線的方程;
(2)若兩點(diǎn)在拋物線上,且滿足,其中點(diǎn),若拋物線上存在異于的點(diǎn),使得經(jīng)過三點(diǎn)的圓和拋物線在點(diǎn)處有相同的切線,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從5名男生和4名女生中選出4人參加辯論比賽.
(1)如果男生中的甲與女生中的乙至少要有1人在內(nèi),那么有多少種不同選法?
(2)如果4個(gè)人中既有男生又有女生,那么有多少種不同選法?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某林場現(xiàn)有木材存量為,每年以25%的增長率逐年遞增,但每年年底要砍伐的木材量為,經(jīng)過年后林場木材存有量為
(1)求的解析式
(2)為保護(hù)生態(tài)環(huán)境,防止水土流失,該地區(qū)每年的森林木材存量不應(yīng)少于,如果,那么該地區(qū)會(huì)發(fā)生水土流失嗎?若會(huì),要經(jīng)過幾年?(取)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)設(shè),求的最大值及相應(yīng)的值;
(2)對任意正數(shù)恒有,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過點(diǎn)作已知直線的平行線,交雙曲線于點(diǎn).
(1)證明:Q是線段MN的中點(diǎn);
(2)分別過點(diǎn)M、N作雙曲線的切線,證明:三條直線相交于同一點(diǎn);
(3)設(shè)為直線上一動(dòng)點(diǎn),過作雙曲線的切線,切點(diǎn)分別為,證明:點(diǎn)Q在直線AB上.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com