【題目】已知,設函數(shù),.
(1)試討論的單調性;
(2)設函數(shù),是否存在實數(shù),使得存在兩個極值點,,且滿足?若存在,求的取值范圍;若不存在,請說明理由.
注:.
【答案】(1)答案不唯一,見解析;(2)存在,
【解析】
(1)求出函數(shù)的定義域以及,討論的取值范圍,即,,或,利用導數(shù)與函數(shù)單調性的關系即可求解.
(2)解法一:求出,根據(jù)題意可得有兩解兩解,從而可得,從而求得,由,令,可得,利用導數(shù)求出的單調性,且根據(jù)即可求解;解法二:根據(jù)函數(shù)有兩個極值點可得,然后將不等式化為,由方程,得,令,,則,將不等式化為關于的不等式,利用導數(shù)即可證出.
解:(1)的定義域為
==,
(i)若,則,所以在遞增,遞減,
(ii)若,則在遞增,遞減,在遞增,
(iii)若,則在遞增;
(iv)若,則在遞增,在遞減,在遞增.
(2)解法一: ,
, 若有兩極值點,
則有兩解兩解,
.
且
所以.
令,則
若則,
,
令
,
,
所以在遞增,在遞減
又,
則在區(qū)間內存在使得.
函數(shù)y=m(x)在單調遞增,在單調遞減,
由,所以當時滿足
,所以
即實數(shù)的取值范圍為
解法二: ,
, 若有兩極值點,
則有兩解,
且,所以
即
由方程,得,
令,,則,
令,求導可得
.
令,得到,
所以在上單調遞增,在單調遞減.
又,,所以由,
即,解得. 故實數(shù)的取值范圍是.
科目:高中數(shù)學 來源: 題型:
【題目】設各項均為正數(shù)的數(shù)列的前n項和為,已知,且,對一切都成立.
(1)當時,證明數(shù)列是常數(shù)列,并求數(shù)列的通項公式;
(2)是否存在實數(shù),使數(shù)列是等差數(shù)列?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某花店每天以每枝5元的價格從農(nóng)場購進若干枝玫瑰花,然后以每枝10元的價格出售.如果當天賣不完,剩下的玫瑰花做垃圾處理.
(Ⅰ)若花店一天購進17枝玫瑰花,求當天的利潤y(單位:元)關于當天需求量n(單位:枝,n∈N)的函數(shù)解析式.
(Ⅱ)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:
日需求量n | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
頻數(shù) | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
(i)假設花店在這100天內每天購進17枝玫瑰花,求這100天的日利潤(單位:元)的平均數(shù);
(ii)若花店一天購進17枝玫瑰花,以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當天的利潤不少于75元的概率.
(命題意圖)本題主要考查給出樣本頻數(shù)分別表求樣本的均值、將頻率做概率求互斥事件的和概率,是簡單題.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,是圓O的直徑,點C是圓O上異于A,B的點,直線平面,E,F分別是,的中點.
(1)記平面與平面的交線為l,試判斷直線l與平面的位置關系,并加以證明;
(2)設,求二面角大小的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系,.以坐標原點為極點,軸正半軸為極軸建立極坐標系,已知曲線的極坐標方程為,點為上的動點,為的中點.
(1)請求出點軌跡的直角坐標方程;
(2)設點的極坐標為若直線經(jīng)過點且與曲線交于點,弦的中點為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的焦點為,為坐標原點,過點的直線與交于、兩點.
(1)若直線與圓相切,求直線的方程;
(2)若直線與軸的交點為,且,,試探究:是否為定值.若為定值,求出該定值,若不為定值,試說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓方程為.
(1)設橢圓的左右焦點分別為、,點在橢圓上運動,求的值;
(2)設直線和圓相切,和橢圓交于、兩點,為原點,線段、分別和圓交于、兩點,設、的面積分別為、,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com