【題目】已知當 時,函數(shù) 的圖象與 的圖象有且只有一個交點,則正實數(shù) 的取值范圍是 ( )
A.
B.
C.
D.

【答案】B
【解析】根據(jù)題意,由于 為正數(shù), 為二次函數(shù),在區(qū)間 為減函數(shù), 為增函數(shù),函數(shù) 為增函數(shù),分兩種情況討論:①當 時,有 在區(qū)間 上, 為減函數(shù),且其值域為 ,函數(shù) 為增函數(shù),其值域為 ,此時兩個函數(shù)的圖象有一個交點,符合題意;②當 時,有 , 在區(qū)間 為減函數(shù), 為增函數(shù),函數(shù) 為增函數(shù), 其值域為 ,若兩個函數(shù)的圖象有一個交點,則有
,解可得 ,由又 為正數(shù),則 ,綜合可得 的取值范圍是
所以答案是:B.
【考點精析】解答此題的關(guān)鍵在于理解函數(shù)的零點與方程根的關(guān)系的相關(guān)知識,掌握二次函數(shù)的零點:(1)△>0,方程 有兩不等實根,二次函數(shù)的圖象與 軸有兩個交點,二次函數(shù)有兩個零點;(2)△=0,方程 有兩相等實根(二重根),二次函數(shù)的圖象與 軸有一個交點,二次函數(shù)有一個二重零點或二階零點;(3)△<0,方程 無實根,二次函數(shù)的圖象與 軸無交點,二次函數(shù)無零點.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】下表是一位母親給兒子作的成長記錄:

年齡/周歲

3

4

5

6

7

8

9

身高/cm

94.8

104.2

108.7

117.8

124.3

130.8

139.1

根據(jù)以上樣本數(shù)據(jù),她建立了身高 (cm)與年齡x(周歲)的線性回歸方程為 ,給出下列結(jié)論:
①y與x具有正的線性相關(guān)關(guān)系;
②回歸直線過樣本的中心點(42,117.1);
③兒子10歲時的身高是 cm;
④兒子年齡增加1周歲,身高約增加 cm.
其中,正確結(jié)論的個數(shù)是
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在長方體 中, , ,點 在棱 上移動,則直線 所成角的大小是 , 若 ,則

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的離心率為 ,且它的一個焦點 的坐標為 .
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設(shè)過焦點 的直線與橢圓相交于 兩點, 是橢圓上不同于 的動點,試求 的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

為了保護環(huán)境,發(fā)展低碳經(jīng)濟,某單位在政府部門的支持下,進行技術(shù)攻關(guān),采用了新工藝,新上了把二氧化碳轉(zhuǎn)化為一種可利用的化工產(chǎn)品的項目.經(jīng)測算,月處理成本(元)與月處理量(噸)之間的函數(shù)關(guān)系可以近似的表示為:,且每處理一噸二氧化碳可得到能利用的化工產(chǎn)品價值為200元,若該項目不獲利,政府將補貼.

(I)當時,判斷該項目能否獲利?如果獲利,求出最大利潤;如果不獲利,則政府每月至少需要補貼多少元才能使該項目不虧損;

(II)該項目每月處理量為多少噸時,才能使每噸的平均處理成本最低?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某游艇制造廠研發(fā)了一種新游艇,今年前5個月的產(chǎn)量如下:

(1)設(shè)關(guān)于的回歸直線方程為現(xiàn)根據(jù)表中數(shù)據(jù)已經(jīng)正確計算出了的值為,試求的值,并估計該廠月份的產(chǎn)量;(計算結(jié)果精確到

(Ⅱ)質(zhì)檢部門發(fā)現(xiàn)該廠月份生產(chǎn)的游艇都存在質(zhì)量問題,要求廠家召回;現(xiàn)有一旅游公司曾向該廠購買了今年前兩個月生產(chǎn)的游艇艘,求該旅游公司有游艇被召回的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)當時,恒成立,求實數(shù)m的取值范圍;

(2)是否存在整數(shù)a、b(其中a、b是常數(shù),且a<b),使得關(guān)于x的不等式的解集為?若存在,求出a、b的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下面程序框圖中,若輸入互不相等的三個正實數(shù)a,b,c(abc≠0),要求判斷△ABC的形狀,則空白的判斷框應(yīng)填入(
A.a2+b2>c2
B.a2+c2>b2?
C.b2+c2>a2
D.b2+a2=c2?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】由經(jīng)驗得知,在某商場付款處排隊等候付款的人數(shù)及概率如表:

排隊人數(shù)

人以上

概率

(1)至多有人排隊的概率是多少?

(2)至少有人排隊的概率是多少?

查看答案和解析>>

同步練習冊答案