已知函數(shù)f(x)=
x2
1+x2

(1)求f(2)與f(
1
2
),f(3)與f(
1
3
)的值;
(2)由(1)中求得的結(jié)果,你能發(fā)現(xiàn)f(x)與f(
1
x
)有什么關(guān)系?證明你的發(fā)現(xiàn);
(3)求下列式子的值.f(0)+f(1)+f(2)+…+f(2013)+f(2014)+f(
1
2
)+f(
1
3
)+…+f(
1
2013
)+f(
1
2014
考點(diǎn):歸納推理,函數(shù)的值
專題:計(jì)算題,推理和證明
分析:(1)利用f(x)=
x2
1+x2
,代入計(jì)算,求f(2)與f(
1
2
),f(3)與f(
1
3
)的值;
(2)f(x)+f(
1
x
)=1,利用f(x)=
x2
1+x2
,即可證明;
(3)利用f(x)+f(
1
x
)=1,可得結(jié)論.
解答: 解:(1)f(2)=
4
5
,f(
1
2
)=
1
5
,f(3)=
9
10
,f(
1
3
)=
1
10
;
(2)f(x)+f(
1
x
)=1,證明如下:
f(x)+f(
1
x
)=
x2
1+x2
+
1
x2
1+
1
x2
=1;
(3)f(0)=0,f(1)=
1
2

∴f(0)+f(1)+f(2)+…+f(2013)+f(2014)+f(
1
2
)+f(
1
3
)+…+f(
1
2013
)+f(
1
2014
)=0+
1
2
+2013=2013
1
2
點(diǎn)評:本題考查歸納推理,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

是命題p:函數(shù)f(x)=(a-
3
2
x是R上的減函數(shù),命題q:f(x)=x2-3x+3在[0,a]上的值域?yàn)閇1,3],若“p或q”為真命題,“p且q”為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直角坐標(biāo)平面內(nèi)的兩點(diǎn)P、Q同時(shí)滿足下列條件:①P、Q都在函數(shù)y=f(x)的圖象上;②P、Q關(guān)于原點(diǎn)對稱.則稱點(diǎn)對[P,Q]是函數(shù)y=f(x)的一對“友好點(diǎn)對”(注:點(diǎn)對[P,Q]與[Q,P]看作同一對“友好點(diǎn)對).已知函數(shù)f(x)=
log2x(x>0)
-x(x≤0)
則此函數(shù)的“友好點(diǎn)對”有
 
對.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在對口扶貧活動中,企業(yè)甲將經(jīng)營狀況良好的某種消費(fèi)品專賣店以優(yōu)惠價(jià)格轉(zhuǎn)讓給小型殘疾人企業(yè)乙,并約定從該店經(jīng)營的利潤中,首先保證企業(yè)乙的全體職工每月最低生活費(fèi)的開支3600元后,逐步償還轉(zhuǎn)讓費(fèi)(不計(jì)息).根據(jù)甲提供的資料有:①這種消費(fèi)品的進(jìn)價(jià)為每件14元;②該店月銷量Q(百件)與銷售價(jià)格P(元)的關(guān)系如圖所示;③每月需各種開支2000元.
(1)寫出月銷售量Q(百件)與銷售價(jià)格P(元)的函數(shù)關(guān)系;
(2)寫出月利潤扣除職工最低生活費(fèi)的余額L(元)與銷售價(jià)格P(元)的函數(shù)關(guān)系;
(3)當(dāng)商品的價(jià)格為每件多少元時(shí),月利潤扣除職工最低生活費(fèi)的余額L最大?并求最大余額.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

e1
,
e2
,
e3
為同一平面內(nèi)互不共線的三個(gè)單位向量,并滿足
e1
+
e2
+
e3
=
0
,且向量
a
=x
e1
+
n
x
e2
+(x+
n
x
e3
 (x∈R,x≠0,n∈N+).
(Ⅰ)求
e1
e2
所成角的大。    
(Ⅱ)記f(x)=|
a
|,試求f(x)的單調(diào)區(qū)間及最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列圖象不能作為函數(shù)圖象的是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}是等差數(shù)列,a3,a10是方程x2-3x-5=0的兩根,則a5+a8=( 。
A、4B、2C、-3D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=
4x
4x+2
,
(1)求證:f(x)+f(1-x)=1;
(2)求和f(
1
2014
)+f(
2
2014
)+…+f(
2013
2014
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,tanA=
1
4
,tanB=
3
5
,AB的長為
17
,試求:
(1)內(nèi)角C的大;
(2)最小邊的邊長.

查看答案和解析>>

同步練習(xí)冊答案