【題目】已知函數(shù)同一周期中最高點的坐標為,最低點的坐標為.
(1)求、、、的值;
(2)利用五點法作出函數(shù)在一個周期上的簡圖.(利用鉛筆直尺作圖,橫縱坐標單位長度符合比例)
【答案】(1),,,;(2)圖象見解析.
【解析】
(1)根據(jù)該函數(shù)的最大值和最小值得出關于、的方程組,解出這兩個量,然后結(jié)合題中信息求出該函數(shù)的最小正周期,可求出的值,再將點的坐標代入函數(shù)的解析式,結(jié)合的取值范圍可求出的值;
(2)在一個周期內(nèi)選取五個點列表、描點、連線作圖,即可得出該函數(shù)在一個周期內(nèi)的圖象.
(1)由題意可得,解得,
且該函數(shù)的最小正周期為,,
,
將點代入這個函數(shù)的解析式得,得,
,則,,解得.
綜上所述,,,,;
(2)由(1)知,函數(shù)解析式為,列表如下:
函數(shù)在一個周期內(nèi)的圖象如下圖所示:
科目:高中數(shù)學 來源: 題型:
【題目】將函數(shù)的圖象向右平移個單位,在向上平移一個單位,得到g(x)的圖象.若g(x1)g(x2)=4,且x1,x2∈[﹣2π,2π],則x1﹣2x2的最大值為( 。
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一種室內(nèi)植物的株高(單位:)與與一定范圍內(nèi)的溫度(單位:)有,現(xiàn)收集了該種植物的組觀測數(shù)據(jù),得到如圖所示的散點圖:
現(xiàn)根據(jù)散點圖利用或建立關于的回歸方程,令,,得到如下數(shù)據(jù):
且與的相關系數(shù)分別為、,其中.
(1)用相關系數(shù)說明哪種模型建立關于的回歸方程更合適;
(2)(i)根據(jù)(1)的結(jié)果及表中數(shù)據(jù),求關于的回歸方程;
(ii)已知這種植物的利潤(單位:千元)與、的關系為,當何值時,利潤的預報值最大.
附:對于樣本,其回歸直線的斜率和截距的最小二乘估計公式分別為:,,
相關系數(shù),.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,傾斜角為的直線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為 .
(Ⅰ)求直線的普通方程和曲線的直角坐標方程;
(Ⅱ)已知點,若點的極坐標為,直線經(jīng)過點且與曲線相交于兩點,設線段的中點為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點P是橢圓上的動點,、為橢圓的左、右焦點,O為坐標原點,若M是的角平分線上的一點,且F1M⊥MP,則|OM|的取值范圍是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙、丙、丁四位同學中僅有一人申請了北京大學的自主招生考試,當他們被問到誰申請了北京大學的自主招生考試時,甲說:“丙或丁申請了”;乙說:“丙申請了”;丙說:“甲和丁都沒有申請”;丁說:“乙申請了”,如果這四位同學中只有兩人說的是對的,那么申請了北京大學的自主招生考試的同學是______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】高斯函數(shù)是數(shù)學中的一個重要函數(shù),在自然科學社會科學以及工程學等領域都能看到它的身影.設,用符號表示不大于的最大整數(shù),如,則叫做高斯函數(shù).給定函數(shù),若關于的方程有5個解,則實數(shù)的取值范圍為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設命題對任意實數(shù),不等式恒成立;命題方程表示焦點在軸上的雙曲線.
(1)若命題為真命題,求實數(shù)的取值范圍;
(2)若命題:“”為真命題,且“”為假命題,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知的直角頂點在軸上,點,為斜邊的中點,且平行于軸.
(1)求點的軌跡方程;
(2)設點的軌跡為曲線,直線與的另一個交點為.以為直徑的圓交軸于、,記此圓的圓心為,,求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com