【題目】下列說法:
①將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,均值與方差都不變;
②設(shè)有一個(gè)回歸方程 ,變量x增加一個(gè)單位時(shí),y平均增加3個(gè)單位;
③線性回歸方程 必經(jīng)過點(diǎn) ;
④在吸煙與患肺病這兩個(gè)分類變量的計(jì)算中,從獨(dú)立性檢驗(yàn)知,有99%的把握認(rèn)為吸煙與患肺病有關(guān)系時(shí),我們說現(xiàn)有100人吸煙,那么其中有99人患肺。渲绣e(cuò)誤的個(gè)數(shù)是( )
A.0
B.1
C.2
D.3

【答案】D
【解析】解:對于①,將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,均值改變,方差不變,∴①錯(cuò)誤;

對于②,回歸方程 中,變量x增加1個(gè)單位時(shí),y平均減少3個(gè)單位,∴②錯(cuò)誤;

對于③,線性回歸方程 必經(jīng)過樣本中心點(diǎn) ,∴③正確;

對于④,從獨(dú)立性檢驗(yàn)知,有99%的把握認(rèn)為吸煙與患肺病有關(guān)系時(shí),

是指有1%的可能性使推斷出現(xiàn)錯(cuò)誤,∴④錯(cuò)誤.

綜上,錯(cuò)誤的命題個(gè)數(shù)是3.

故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將一枚骰子先后拋擲兩次.

(1)一共有多少種不同的結(jié)果?

(2)其中向上的數(shù)之和是5的結(jié)果有多少種?

(3)向上的數(shù)之和是5的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知R是實(shí)數(shù)集,集合A={x|( 2x+1 },B={x|log4(3﹣x)<0.5},則(RA)∩B=(
A.(1,2)
B.(1,2)
C.(1,3)
D.(1,1.5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方體的棱長為1,線段上有兩個(gè)動(dòng)點(diǎn),;則下列結(jié)論錯(cuò)誤的是( )

A. B. 平面

C. 三棱錐的體積為定值 D. 的面積與的面積相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務(wù)質(zhì)量,收集并整理了2014年1月至2016年12月期間月接待游客量(單位:萬人)的數(shù)據(jù),繪制了下面的折線圖.

根據(jù)該折線圖,下列結(jié)論錯(cuò)誤的是(  )

A. 月接待游客量逐月增加

B. 年接待游客量逐年增加

C. 各年的月接待游客量高峰期大致在7,8月

D. 各年1月至6月的月接待游客量相對于7月至12月,波動(dòng)性更小,變化比較平穩(wěn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】解答題
(Ⅰ)某科考試中,從甲、乙兩個(gè)班級各抽取10名同學(xué)的成績進(jìn)行統(tǒng)計(jì)分析,兩班成績的莖葉圖如圖所示,成績不小于90分為及格.設(shè)甲、乙兩個(gè)班所抽取的10名同學(xué)成績方差分別為 、 ,比較 的大。ㄖ苯訉懡Y(jié)果,不必寫過程);
(Ⅱ)設(shè)集合 ,B={x|m+x2≤1,m<1},命題p:x∈A;命題q:x∈B,若p是q的必要條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=2x3﹣9x2+12x+1的單調(diào)減區(qū)間是(
A.(1,2)
B.(2,+∞)
C.(﹣∞,1)
D.(﹣∞,1)和(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ax2﹣lnx﹣2.
(1)當(dāng)a=1時(shí),求曲線f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù)f(x),若存在x0∈R,使f(x0)=x0 , 則稱x0是f(x)的一個(gè)不動(dòng)點(diǎn).
(1)若函數(shù)f(x)=2x+ ﹣5,求此函數(shù)的不動(dòng)點(diǎn);
(2)若二次函數(shù)f(x)=ax2﹣x+3在x∈(1,+∞)上有兩個(gè)不同的不動(dòng)點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案