【題目】已知四棱錐中,,側(cè)面底面

)作出平面與平面的交線,并證明平面;

)求二面角的余弦值.

【答案】)見解析;(

【解析】

1)延長相交于點(diǎn),連結(jié),即為平面與平面的交線,利用面面垂直的性質(zhì)定理可得側(cè)面,證出,,利用線面垂直的判定定理即可證出.

2)以為原點(diǎn),以分別為軸、軸,建立空間直角坐標(biāo)系,求出平面的一個(gè)法向量與平面的一個(gè)法向量,利用空間向量的數(shù)量積即可求解.

)延長相交于點(diǎn),連結(jié),

即為平面與平面的交線

因?yàn)閭?cè)面平面,且,

所以側(cè)面

側(cè)面,所以

中,,

所以分別為的中點(diǎn)

所以,故

,所以平面,即平面

)以為原點(diǎn),以分別為軸、軸,

建立空間直角坐標(biāo)系,如圖所示.則,

在直角三角形中,

由()知分別為的中點(diǎn),

所以,,

,,,

設(shè)平面的法向量為

,即

,則,故

設(shè)平面的法向量為,

,即,

,則,故

又二面角為鈍角,故二面角的余弦值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在極坐標(biāo)系中,已知曲線,將曲線上的點(diǎn)向左平移一個(gè)單位,然后縱坐標(biāo)不變,橫坐標(biāo)軸伸長到原來的2倍,得到曲線,又已知直線是參數(shù)),且直線與曲線交于兩點(diǎn).

I)求曲線的直角坐標(biāo)方程,并說明它是什么曲線;

II)設(shè)定點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)圖像上的點(diǎn)處的切線方程為

1若函數(shù)時(shí)有極值,的表達(dá)式;

2函數(shù)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=(x+1)ln x-2x.

(1)求函數(shù)的單調(diào)區(qū)間;

(2)設(shè)h(x)=f′(x)+,若h(x)>k(kZ)恒成立,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了響應(yīng)黨的十九大所提出的教育教學(xué)改革,某校啟動(dòng)了數(shù)學(xué)教學(xué)方法的探索,學(xué)校將高一年級(jí)部分生源情況基本相同的學(xué)生分成甲、乙兩個(gè)班,每班40人,甲班按原有傳統(tǒng)模式教學(xué),乙班實(shí)施自主學(xué)習(xí)模式.經(jīng)過一年的教學(xué)實(shí)驗(yàn),將甲、乙兩個(gè)班學(xué)生一年來的數(shù)學(xué)成績?nèi)∑骄鶖?shù),兩個(gè)班學(xué)生的平均成績均在,按照區(qū)間,,,,進(jìn)行分組,繪制成如下頻率分布直方圖,規(guī)定不低于80分(百分制)為優(yōu)秀.

0.10

0.05

0.025

2.706

3.841

5.024

1)完成表格,并判斷是否有以上的把握認(rèn)為數(shù)學(xué)成績優(yōu)秀與教學(xué)改革有關(guān)

甲班

乙班

合計(jì)

大于等于80分的人數(shù)

小于80分的人數(shù)

合計(jì)

2)從乙班,分?jǐn)?shù)段中,按分層抽樣隨機(jī)抽取7名學(xué)生座談,從中選三位同學(xué)發(fā)言,記來自發(fā)言的人數(shù)為隨機(jī)變量,求的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某周末,鄭州方特夢幻王國匯聚了八方來客.面對(duì)該園區(qū)內(nèi)相鄰的兩個(gè)主題公園“千古蝶戀”和“西游傳說”,成年人和未成年人選擇游玩的意向會(huì)有所不同.某統(tǒng)計(jì)機(jī)構(gòu)對(duì)園區(qū)內(nèi)的100位游客(這些游客只在兩個(gè)主題公園中二選一)進(jìn)行了問卷調(diào)查.調(diào)查結(jié)果顯示,在被調(diào)查的50位成年人中,只有10人選擇“西游傳說”,而選擇“西游傳說”的未成年人有20.

1)根據(jù)題意,請(qǐng)將下面的列聯(lián)表填寫完整;

選擇“西游傳說”

選擇“千古蝶戀”

總計(jì)

成年人

未成年人

總計(jì)

2)根據(jù)列聯(lián)表的數(shù)據(jù),判斷是否有的把握認(rèn)為選擇哪個(gè)主題公園與年齡有關(guān).

附參考公式與表:.

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】每年10月中上旬是小麥的最佳種植時(shí)間,但小麥的發(fā)芽會(huì)受到土壤、氣候等多方面因素的影響.某科技小組為了解晝夜溫差的大小與小麥發(fā)芽的多少之間的關(guān)系,在不同的溫差下統(tǒng)計(jì)了100顆小麥種子的發(fā)芽數(shù),得到了如下數(shù)據(jù):

溫差

8

10

11

12

13

發(fā)芽數(shù)(顆)

79

81

85

86

90

(1)請(qǐng)根據(jù)統(tǒng)計(jì)的最后三組數(shù)據(jù),求出關(guān)于的線性回歸方程

(2)若由(1)中的線性回歸方程得到的估計(jì)值與前兩組數(shù)據(jù)的實(shí)際值誤差均不超過兩顆,則認(rèn)為線性回歸方程是可靠的,試判斷(1)中得到的線性回歸方程是否可靠;

(3)若100顆小麥種子的發(fā)芽率為顆,則記為的發(fā)芽率,當(dāng)發(fā)芽率為時(shí),平均每畝地的收益為元,某農(nóng)場有土地10萬畝,小麥種植期間晝夜溫差大約為,根據(jù)(1)中得到的線性回歸方程估計(jì)該農(nóng)場種植小麥所獲得的收益.

附:在線性回歸方程中,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)將100名高一新生分成水平相同的甲,乙兩個(gè)平行班,每班50.陳老師采用AB兩種不同的教學(xué)方式分別在甲,乙兩個(gè)班級(jí)進(jìn)行教改實(shí)驗(yàn).為了解教學(xué)效果,期末考試后,陳老師分別從兩個(gè)班級(jí)中各隨機(jī)抽取20名學(xué)生的成績進(jìn)行統(tǒng)計(jì),作出莖葉圖如下,計(jì)成績不低于90分者為成績優(yōu)秀”.

1)從乙班樣本的20個(gè)個(gè)體中,從不低于86分的成績中隨機(jī)抽取2個(gè),求抽出的兩個(gè)均成績優(yōu)秀的概率.

2)由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為成績優(yōu)秀與教學(xué)方式有關(guān).

甲班(A方式)

乙班(B方式)

總計(jì)

成績優(yōu)秀

成績不優(yōu)秀

總計(jì)

附:臨界值表

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

1)當(dāng)求函數(shù)的單調(diào)區(qū)間和極值;

2)若存在滿足,證明:成立.

查看答案和解析>>

同步練習(xí)冊(cè)答案