【題目】某中學(xué)將100名高一新生分成水平相同的甲,乙兩個(gè)平行班,每班50.陳老師采用AB兩種不同的教學(xué)方式分別在甲,乙兩個(gè)班級(jí)進(jìn)行教改實(shí)驗(yàn).為了解教學(xué)效果,期末考試后,陳老師分別從兩個(gè)班級(jí)中各隨機(jī)抽取20名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì),作出莖葉圖如下,計(jì)成績(jī)不低于90分者為成績(jī)優(yōu)秀”.

1)從乙班樣本的20個(gè)個(gè)體中,從不低于86分的成績(jī)中隨機(jī)抽取2個(gè),求抽出的兩個(gè)均成績(jī)優(yōu)秀的概率.

2)由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為成績(jī)優(yōu)秀與教學(xué)方式有關(guān).

甲班(A方式)

乙班(B方式)

總計(jì)

成績(jī)優(yōu)秀

成績(jī)不優(yōu)秀

總計(jì)

附:臨界值表

【答案】1; 2)列聯(lián)表見(jiàn)詳解;有90%的把握認(rèn)為成績(jī)優(yōu)秀與教學(xué)方式有關(guān).

【解析】

1)利用列舉法確定基本事件個(gè)數(shù),由此能求出抽出的兩個(gè)均成績(jī)優(yōu)秀的概率.

2)由已知數(shù)據(jù)能完成2×2列聯(lián)表,據(jù)列聯(lián)表中的數(shù)據(jù),求出,所以有90%的把握認(rèn)為成績(jī)優(yōu)秀與教學(xué)方式有關(guān).

1)設(shè)抽出的兩個(gè)均成績(jī)優(yōu)秀為事件

從不低于86分的成績(jī)中隨機(jī)抽取2個(gè)的基本事件為

,,,,,,

,,,,,

個(gè).

而事件包含的基本事件:,,

,,,,,共個(gè).

所以所求概率為.

2) 由已知數(shù)據(jù)可得:

甲班(A方式)

乙班(B方式)

總計(jì)

成績(jī)優(yōu)秀

成績(jī)不優(yōu)秀

總計(jì)

根據(jù)2×2列聯(lián)表中數(shù)據(jù)

,

所以有90%的把握認(rèn)為成績(jī)優(yōu)秀與教學(xué)方式有關(guān).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】101日,某品牌的兩款最新手機(jī)(記為型號(hào),型號(hào))同時(shí)投放市場(chǎng),手機(jī)廠商為了解這兩款手機(jī)的銷售情況,在101日當(dāng)天,隨機(jī)調(diào)查了5個(gè)手機(jī)店中這兩款手機(jī)的銷量(單位:部),得到下表:

手機(jī)店

型號(hào)手機(jī)銷量

6

6

13

8

11

型號(hào)手機(jī)銷量

12

9

13

6

4

(Ⅰ)若在101日當(dāng)天,從,這兩個(gè)手機(jī)店售出的新款手機(jī)中各隨機(jī)抽取1部,求抽取的2部手機(jī)中至少有一部為型號(hào)手機(jī)的概率;

(Ⅱ)現(xiàn)從這5個(gè)手機(jī)店中任選3個(gè)舉行促銷活動(dòng),用表示其中型號(hào)手機(jī)銷量超過(guò)型號(hào)手機(jī)銷量的手機(jī)店的個(gè)數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望;

(III)經(jīng)測(cè)算,型號(hào)手機(jī)的銷售成本(百元)與銷量(部)滿足關(guān)系.若表中型號(hào)手機(jī)銷量的方差,試給出表中5個(gè)手機(jī)店的型號(hào)手機(jī)銷售成本的方差的值.(用表示,結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐中,,側(cè)面底面

)作出平面與平面的交線,并證明平面

)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{}的首項(xiàng)a12,前n項(xiàng)和為,且數(shù)列{}是以為公差的等差數(shù)列·

1)求數(shù)列{}的通項(xiàng)公式;

2)設(shè),,數(shù)列{}的前n項(xiàng)和為,

①求證:數(shù)列{}為等比數(shù)列,

②若存在整數(shù)mn(mn1),使得,其中為常數(shù),且2,求的所有可能值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線上一點(diǎn)到焦點(diǎn)的距離.

(1)求拋物線的方程;

(2)過(guò)點(diǎn)引圓的兩條切線,切線與拋物線的另一交點(diǎn)分別為,線段中點(diǎn)的橫坐標(biāo)記為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某射擊運(yùn)動(dòng)員在比賽前進(jìn)行三周的封閉訓(xùn)練,教練員將其每天成績(jī)的均值數(shù)據(jù)整理,并繪成條形圖如下,

根據(jù)該圖,下列說(shuō)法錯(cuò)誤的是:(

A.第三周平均成績(jī)最好B.第一周平均成績(jī)比第二平均成績(jī)好

C.第一周成績(jī)波動(dòng)較大D.第三周成績(jī)比較穩(wěn)定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù).

1)若函數(shù)處取得極值,求a的值;

2)若函數(shù)的圖象在直線圖象的下方,求a的取值范圍;

3)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)生為了測(cè)試煤氣灶燒水如何節(jié)省煤氣的問(wèn)題設(shè)計(jì)了一個(gè)實(shí)驗(yàn),并獲得了煤氣開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)x與燒開一壺水所用時(shí)間y的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如表),得到了散點(diǎn)圖(如圖).

表中,.

1)根據(jù)散點(diǎn)圖判斷,哪一個(gè)更適宜作燒水時(shí)間y關(guān)于開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)x的回歸方程類型?(不必說(shuō)明理由)

2)根據(jù)判斷結(jié)果和表中數(shù)據(jù),建立y關(guān)于x的回歸方程;

3)若旋轉(zhuǎn)的弧度數(shù)x與單位時(shí)間內(nèi)煤氣輸出量t成正比,那么x為多少時(shí),燒開一壺水最省煤氣?

附:對(duì)于一組數(shù)據(jù),,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】鐵人中學(xué)高二學(xué)年某學(xué)生對(duì)其親屬30人飲食習(xí)慣進(jìn)行了一次調(diào)查,并用如圖所示的莖葉圖表示30人的飲食指數(shù).(說(shuō)明:圖中飲食指數(shù)低于70的人,飲食以蔬菜為主;飲食指數(shù)高于70的人,飲食以肉類為主.)

(Ⅰ)根據(jù)莖葉圖,幫助這位學(xué)生說(shuō)明其親屬30人的飲食習(xí)慣;

(Ⅱ)根據(jù)以上數(shù)據(jù)完成下列的列聯(lián)表:

主食蔬菜

主食肉類

合計(jì)

50歲以下人數(shù)

50歲以上人數(shù)

合計(jì)人數(shù)

(Ⅲ)能否在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為其親屬的飲食習(xí)慣與年齡有關(guān)系?

附:.

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習(xí)冊(cè)答案