下圖,有一個(gè)是函數(shù)f(x)=
1
3
x3+ax2+(a2-1)x+1(a∈R,a≠0)
1
3
x3+ax2+(a2-1)2+1(a∈R,a≠0)的導(dǎo)函數(shù)f′(x)的圖象,則f(-1)等于( 。
A、
1
3
B、-
1
3
C、
7
3
D、-
1
3
5
3
考點(diǎn):函數(shù)的圖象,導(dǎo)數(shù)的運(yùn)算
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:求出導(dǎo)函數(shù),據(jù)導(dǎo)函數(shù)的二次項(xiàng)系數(shù)為正得到圖象開(kāi)口向上;利用函數(shù)解析式中有2ax,故函數(shù)不是偶函數(shù),得到函數(shù)的圖象.
解答: 解:∵f′(x)=x2+2ax+(a2-1),
∴導(dǎo)函數(shù)f′(x)的圖象開(kāi)口向上.
又∵a≠0,
∴f(x)不是偶函數(shù),其圖象不關(guān)于y軸對(duì)稱
其圖象必為第三張圖.由圖象特征知f′(0)=0,
且對(duì)稱軸-a>0,
∴a=-1.
∴f(x)=
1
3
x3-x2+1
∴f(-1)=-
1
3
-1+1=-
1
3

故選:B
點(diǎn)評(píng):本題考查導(dǎo)函數(shù)的運(yùn)算法則、二次函數(shù)的圖象與二次函數(shù)系數(shù)的關(guān)系:開(kāi)口方向與二次項(xiàng)系數(shù)的符號(hào)有關(guān)、對(duì)稱軸公式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

復(fù)數(shù)z=log2(m2-3m-3)+ilog2(3-m)(m∈R),如果a是純虛數(shù),則m的值為( 。
A、-1或4B、-1C、4D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線兩條漸近線的夾角為60°,求該雙曲線的離心率是多少.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

1-2x
x+4
≥0的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)是定義在R上周期為4的奇函數(shù),若在區(qū)間[-2,0)∪(0,2],f(x)=
ax+b,-2≤x<0
ax-1,0<x≤2
,則f(2015)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖直三棱柱ABC-A1B1C1的體積為120,點(diǎn)P、Q分別在側(cè)棱AA1和CC1上,AP=C1Q,則四棱錐B-APQC的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

根據(jù)市場(chǎng)調(diào)查結(jié)果,預(yù)測(cè)某種家用商品從年初開(kāi)始的n個(gè)月內(nèi)累積的需求量Sn(萬(wàn)件)近似地滿足關(guān)系式Sn=
n
90
(21n-n2-5)(n=1,2,…,12),按此預(yù)測(cè),在本年度內(nèi),需求量超過(guò)1.5萬(wàn)件的月份是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:
(1)如果平面α與平面β相交,那么它們只有有限個(gè)公共點(diǎn);
(2)過(guò)一條直線的平面有無(wú)數(shù)多個(gè);
(3)兩個(gè)平面的交線可能是一條線段;
(4)兩個(gè)相交平面有不在同一條直線上的三個(gè)公共點(diǎn);
(5)經(jīng)過(guò)空間任意三點(diǎn)有且僅有一個(gè)平面;
(6)如果兩個(gè)平面有三個(gè)不共線的公共點(diǎn),那么這兩個(gè)平面就重合為一個(gè)平面.
其中所有真命題序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2cos2x+2
3
sinxcosx-1(x∈R)
(1)求函數(shù)f(x)的周期及單調(diào)遞減區(qū)間;
(2)若|x|≤
π
4
,求函數(shù)f(x)的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案