【題目】已知函數(shù),且曲線在點處的切線與直線垂直.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)求證:時,.
【答案】(1)的單調(diào)增區(qū)間為,無減區(qū)間(2)詳見解析.
【解析】
(1)求出原函數(shù)的導函數(shù),得到函數(shù)在x=1時的導數(shù),再求得f(1),然后利用直線方程的點斜式得答案;(2)構(gòu)造新函數(shù)h(x)=ex﹣x2﹣(e﹣2)x﹣1,證明ex﹣(e﹣2)x﹣1≥x2;令新函數(shù)φ(x)=lnx﹣x,證明x(lnx+1)≤x2,從而證明結(jié)論成立.
(1)由,得.
因為曲線在點處的切線與直線垂直,
所以,所以,即,.
令,則.所以時,,單調(diào)遞減;
時,,單調(diào)遞增.所以,所以,單調(diào)遞增.
即的單調(diào)增區(qū)間為,無減區(qū)間
(2)由(1)知,,所以在處的切線為,
即.
令,則,
且,,
時,,單調(diào)遞減;
時,,單調(diào)遞增.
因為,所以,因為,所以存在,使時,,單調(diào)遞增;
時,,單調(diào)遞減;時,,單調(diào)遞增.
又,所以時,,即,
所以.
令,則.所以時,,單調(diào)遞增;
時,,單調(diào)遞減,所以,即,
因為,所以,所以時,,
即時,.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,以橢圓E的長軸和短軸為對角線的四邊形的面積為.
(1)求橢圓E的方程;
(2)若直線與橢圓E相交于A,B兩點,設P為橢圓E上一動點,且滿足(O為坐標原點).當時,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)上的偶函數(shù),其圖象關(guān)于點對稱,且在區(qū)間上是單調(diào)函數(shù),則的值是( )
A. B. C. 或 D. 無法確定
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(其中 ,為自然對數(shù)的底數(shù)).
(Ⅰ)若函數(shù)無極值,求實數(shù)的取值范圍;
(Ⅱ)當時,證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】春節(jié)期間某商店出售某種海鮮禮盒,假設每天該禮盒的需求量在范圍內(nèi)等可能取值,該禮盒的進貨量也在范圍內(nèi)取值(每天進1次貨).商店每銷售1盒禮盒可獲利50元;若供大于求,剩余的削價處理,每處理1盒禮盒虧損10元;若供不應求,可從其它商店調(diào)撥,銷售1盒禮盒可獲利30元.設該禮盒每天的需求量為盒,進貨量為盒,商店的日利潤為元.
(1)求商店的日利潤關(guān)于需求量的函數(shù)表達式;
(2)試計算進貨量為多少時,商店日利潤的期望值最大?并求出日利潤期望值的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐PABCD-中,AB//CD,AB=1,CD=3,AP=2,DP=2,PAD=60°,AB⊥平面PAD,點M在棱PC上.
(Ⅰ)求證:平面PAB⊥平面PCD;
(Ⅱ)若直線PA// 平面MBD,求此時直線BP與平面MBD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線的焦點為,準線為,過點的直線交拋物線于,兩點,點在準線上的投影為,點是拋物線上一點,且滿足.
(1)若點坐標是,求線段中點的坐標;
(2)求面積的最小值及此時直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com