【題目】在無窮數(shù)列中, ,對于任意,都有, ,設(shè),記使得成立的的最大值為

)設(shè)數(shù)列, , ,寫出 , 的值.

)若為等比例數(shù)列,且,求的值.

)若為等差數(shù)列,求出所有可能的數(shù)列

【答案】(1), , ;(2);(3.

【解析】試題分析:(1)根據(jù)題意,使得成立的的最大值為,即可寫出, , 的值;(2)確定, , ,

, ,分組求和,即可的值;(3)若為等差數(shù)列,先判斷,再證明,可得,從而可得結(jié)果

試題解析:, ,

為等比數(shù)列, ,

,

∵使得成立的的最大值為,

, ,

, ,

)由題意得,

結(jié)合條件,得,

又∵使得成立的的最大值為,使得成立的的最大值為,

, ,

設(shè),則

假設(shè),即,則當(dāng)時(shí), ,當(dāng)時(shí), ,

,

為等差數(shù)列,

∴公差,

,其中,這與矛盾,

,

又∵

∵使得,由,得

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)用“五點(diǎn)法”畫函數(shù)在某一個(gè)周期內(nèi)的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如下表:

0

0

2

0

0

(1)請將上表數(shù)據(jù)補(bǔ)充完整;函數(shù)的解析式為= (直接寫出結(jié)果即可);

(2)求函數(shù)的單調(diào)遞增區(qū)間;

(3)求函數(shù)在區(qū)間上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 +y2=1(a>1),過直線l:x=2上一點(diǎn)P作橢圓的切線,切點(diǎn)為A,當(dāng)P點(diǎn)在x軸上時(shí),切線PA的斜率為± . (Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)O為坐標(biāo)原點(diǎn),求△POA面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是等差數(shù)列,滿足, ,數(shù)列滿足, ,且是等比數(shù)列.

1)求數(shù)列的通項(xiàng)公式;

2)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4﹣1:幾何證明選講
如圖,⊙O和⊙O′相交于A,B兩點(diǎn),過A作兩圓的切線分別交兩圓于C、D兩點(diǎn),連接DB并延長交⊙O于點(diǎn)E.證明:

(1)ACBD=ADAB;
(2)AC=AE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AB=AC=AD,AH⊥CD于H,BD交AH于P,且PC⊥BC

(1)求證:A,B,C,P四點(diǎn)共圓;
(2)若∠CAD= ,AB=1,求四邊形ABCP的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2axb , g(x)=ex(cxd),若曲線yf(x)和曲線yg(x)都過點(diǎn)P(0,2),且在點(diǎn)P處有相同的切線y=4x+2.
(1)求a , b , cd的值;
(2)若x≥-2時(shí),恒有f(x)≤kg(x),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fn(x)= (n∈N*),關(guān)于此函數(shù)的說法正確的序號是
①fn(x)(n∈N*)為周期函數(shù);②fn(x)(n∈N*)有對稱軸;③( ,0)為fn(x)(n∈N*)的對稱中心:④|fn(x)|≤n(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知長方形 , , ,以 的中點(diǎn) 為原點(diǎn),建立如圖所示的平面直角坐標(biāo)系 .

(1)求以 為焦點(diǎn),且過 兩點(diǎn)的橢圓的標(biāo)準(zhǔn)方程;
(2)在(1)的條件下,過點(diǎn) 作直線 與橢圓交于不同的兩點(diǎn) ,設(shè) ,點(diǎn) 坐標(biāo)為 ,若 ,求 的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案