【題目】已知函數(shù)fn(x)= (n∈N*),關(guān)于此函數(shù)的說法正確的序號是
①fn(x)(n∈N*)為周期函數(shù);②fn(x)(n∈N*)有對稱軸;③( ,0)為fn(x)(n∈N*)的對稱中心:④|fn(x)|≤n(n∈N*).
【答案】①②④
【解析】解:∵函數(shù)fn(x)= (n∈N*),
∴①fn(x+2π)=fn(x)(n∈N*),fn(x為周期函數(shù),正確;
②fn(﹣x)= = ,fn(x)= (n∈N*)是偶函數(shù),∴fn(x)= (n∈N*)有對稱軸,正確;
③n為偶數(shù)時(shí),fn( )= =0,∴( ,0)為fn(x)(n∈N*)的對稱中心,不正確;
④∵|sinnx|≤|nsinx|,∴|fn(x)|≤n(n∈N*),正確.
所以答案是:①②④.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解命題的真假判斷與應(yīng)用的相關(guān)知識,掌握兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒有關(guān)系.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知橢圓C: + =1(a>b>0)的離心率為 ,AB為橢圓的一條弦(不經(jīng)過原點(diǎn)),直線y=kx(k>0)經(jīng)過弦AB的中點(diǎn),與橢圓C交于P,Q兩點(diǎn),設(shè)直線AB的斜率為k1 .
(1)若點(diǎn)Q的坐標(biāo)為(1, ),求橢圓C的方程;
(2)求證:k1k為定值;
(3)過P點(diǎn)作x軸的垂線,垂足為R,若直線AB和直線QR傾斜角互補(bǔ).若△PQR的面積為2 ,求橢圓C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在無窮數(shù)列中, ,對于任意,都有, ,設(shè),記使得成立的的最大值為.
()設(shè)數(shù)列為, , , , ,寫出, , 的值.
()若為等比例數(shù)列,且,求的值.
()若為等差數(shù)列,求出所有可能的數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:(x-3)2+(y-4)2=1,設(shè)點(diǎn)P是圓C上的動點(diǎn).記d=|PB|2+|PA|2,其中A(0,1),B(0,-1),則d的取值范圍為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查“五一”小長假出游選擇“有水的地方”是否與性別有關(guān),現(xiàn)從該市“五一”出游旅客中隨機(jī)抽取500人進(jìn)行調(diào)查,得到如下2×2列聯(lián)表:(單位:人)
選擇“有水的地方” | 不選擇“有水的地方” | 合計(jì) | |
男 | 90 | 110 | 200 |
女 | 210 | 90 | 300 |
合計(jì) | 300 | 200 | 500 |
(Ⅰ)據(jù)此樣本,有多大的把握認(rèn)為選擇“有水的地方”與性別有關(guān);
(Ⅱ)若以樣本中各事件的頻率作為概率估計(jì)全市“五一”所有出游旅客情況,現(xiàn)從該市的全體出游旅客(人數(shù)眾多)中隨機(jī)抽取3人,設(shè)3人中選擇“有水的地方”的人數(shù)為隨機(jī)變量X,求隨機(jī)變量X的數(shù)學(xué)期望和方差.
附臨界值表及參考公式:
P(K2≥k0) | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,n=a+b+c+d.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x+a|-|x-1|.
(Ⅰ)當(dāng)a=-2時(shí),求不等式 的解集;
(Ⅱ)若f(x)≥2有解,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=2ln(x+2)﹣(x+1)2 , g(x)=k(x+1).
(1)求f(x)的單調(diào)區(qū)間;
(2)當(dāng)k=2時(shí),求證:對于x>﹣1,f(x)<g(x)恒成立;
(3)若存在x0>﹣1,使得當(dāng)x∈(﹣1,x0)時(shí),恒有f(x)>g(x)成立,試求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某少數(shù)民族的刺繡有著悠久的歷史,圖(1)、(2)、(3)、(4)為她們刺繡最簡單的四個(gè)圖案,這些圖案都由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮,現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第 個(gè)圖形包含 個(gè)小正方形.
(Ⅰ)求出 ;
(Ⅱ)利用合情推理的“歸納推理思想”歸納出 與 的關(guān)系式,并根據(jù)你得到的關(guān)系式求 的表達(dá)式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com