【題目】已知圓C:(x-3)2+(y-4)2=1,設(shè)點(diǎn)P是圓C上的動(dòng)點(diǎn).記d=|PB|2+|PA|2,其中A(0,1),B(0,-1),則d的取值范圍為________.
【答案】
【解析】設(shè)P點(diǎn)的坐標(biāo)為(3+ cosα,4+sinα),
則d=|PA|2+|PB|2=(3+sinα)2+(3+cosα)2+(3+sinα)2+(5+cosα)2
=52+12sinα+16cosα=52+20sin(θ+α)
∴當(dāng)sin(θ+α)=1時(shí),即12sinα+16cosα=20時(shí),d取最大值72,當(dāng)sin(θ+α)=﹣1時(shí),
即12sinα+16cosα=﹣20,d取最小值32,
∴d的取值范圍是[32,72].
故答案為[32,72].
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】斜棱柱ABC﹣A1B1C1中,側(cè)面AA1C1C⊥面ABC,側(cè)面AA1C1C為菱形,∠A1AC=60°,E,F(xiàn)分別為A1C1和AB的中點(diǎn).
(1)求證:平面CEF⊥平面ABC;
(2)若三棱柱的所有棱長(zhǎng)為2,求三棱柱F﹣ECB的體積;
(3)D為棱BC上一點(diǎn),若C1D∥EF,請(qǐng)確定點(diǎn)D位置,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是等差數(shù)列,滿(mǎn)足, ,數(shù)列滿(mǎn)足, ,且是等比數(shù)列.
(1)求數(shù)列和的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,AB=AC=AD,AH⊥CD于H,BD交AH于P,且PC⊥BC
(1)求證:A,B,C,P四點(diǎn)共圓;
(2)若∠CAD= ,AB=1,求四邊形ABCP的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2+ax+b , g(x)=ex(cx+d),若曲線(xiàn)y=f(x)和曲線(xiàn)y=g(x)都過(guò)點(diǎn)P(0,2),且在點(diǎn)P處有相同的切線(xiàn)y=4x+2.
(1)求a , b , c , d的值;
(2)若x≥-2時(shí),恒有f(x)≤kg(x),求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知復(fù)數(shù)z=1+mi(i是虛數(shù)單位,m∈R),且 為純虛數(shù)( 是z的共軛復(fù)數(shù)).
(1)設(shè)復(fù)數(shù) ,求|z1|;
(2)設(shè)復(fù)數(shù) ,且復(fù)數(shù)z2所對(duì)應(yīng)的點(diǎn)在第四象限,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)fn(x)= (n∈N*),關(guān)于此函數(shù)的說(shuō)法正確的序號(hào)是
①fn(x)(n∈N*)為周期函數(shù);②fn(x)(n∈N*)有對(duì)稱(chēng)軸;③( ,0)為fn(x)(n∈N*)的對(duì)稱(chēng)中心:④|fn(x)|≤n(n∈N*).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)fn(x)= (n∈N*),關(guān)于此函數(shù)的說(shuō)法正確的序號(hào)是
①fn(x)(n∈N*)為周期函數(shù);②fn(x)(n∈N*)有對(duì)稱(chēng)軸;③( ,0)為fn(x)(n∈N*)的對(duì)稱(chēng)中心:④|fn(x)|≤n(n∈N*).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn) 為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點(diǎn) 的極坐標(biāo)為 ,曲線(xiàn) 的參數(shù)方程為 為參數(shù)).
(1)直線(xiàn) 過(guò) 且與曲線(xiàn) 相切,求直線(xiàn) 的極坐標(biāo)方程;
(2)點(diǎn) 與點(diǎn) 關(guān)于 軸對(duì)稱(chēng),求曲線(xiàn) 上的點(diǎn)到點(diǎn) 的距離的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com