【題目】已知函數(shù).
(1)當(dāng)時(shí),解不等式;
(2)若關(guān)于的方程在區(qū)間上恰有一個(gè)實(shí)數(shù)解,求的取值范圍;
(3)設(shè),若存在使得函數(shù)在區(qū)間上的最大值和最小值的差不超過(guò)1,求的取值范圍.
【答案】(1);(2);(3).
【解析】
(1)根據(jù)對(duì)數(shù)函數(shù)單調(diào)性解不等式,轉(zhuǎn)化為解分式不等式;
(2)將問(wèn)題轉(zhuǎn)化為在區(qū)間上恰有一個(gè)實(shí)數(shù)解,轉(zhuǎn)化為方程的根的問(wèn)題;
(3)根據(jù)函數(shù)的單調(diào)性求出最值,根據(jù)不等式有解分離參數(shù)求取值范圍.
(1)當(dāng)時(shí),,,
即,,,與同解,
得;
(2)由題意:關(guān)于x的方程在區(qū)間上恰有一個(gè)實(shí)數(shù)解,
,
,
在區(qū)間上恰有一個(gè)實(shí)數(shù)解,
即,解得:,
且,即,
綜上所述:;
(3)由題:,,函數(shù)在區(qū)間上單調(diào)遞減,
最大值和最小值的差不超過(guò)1,即
,
所以
即存在使成立,只需即可,
考慮函數(shù),,令,
,
根據(jù)勾型函數(shù)性質(zhì)在單調(diào)遞減,
所以在單調(diào)遞減,所以,
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
若是函數(shù)的極值點(diǎn),1是函數(shù)的一個(gè)零點(diǎn),求的值;
當(dāng)時(shí),討論函數(shù)的單調(diào)性;
若對(duì)任意,都存在,使得成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,BC=2,CD=1+,過(guò)A作AE⊥CD,垂足為E,現(xiàn)將△ADE沿AE折疊,使得DE⊥EC.
(1)求證:BC⊥面CDE;
(2)在線段AE上是否存在一點(diǎn)R,使得面BDR⊥面DCB,若存在,求出點(diǎn)R的位置;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在平行四邊形中,點(diǎn)是邊的中點(diǎn),將沿折起,使點(diǎn)到達(dá)點(diǎn)的位置,且
(1)求證; 平面平面;
(2)若平面和平面的交線為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)解不等式:
(2)是否存在實(shí)數(shù)t,使得不等式,對(duì)任意的及任意銳角都成立,若存在,求出t的取值范圍:若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中正確的有______.
①.
②已知,則.
③函數(shù)的圖象與函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng).
④函數(shù)的遞增區(qū)間為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四棱錐中,底面是直角梯形,∥,,,,又平面,且,點(diǎn)在棱上且.
(1)求證:;
(2)求與平面所成角的正弦值;
(3)求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】出租車(chē)幾何學(xué)是由十九世紀(jì)的赫爾曼·閔可夫斯基所創(chuàng)立的。在出租車(chē)幾何學(xué)中,點(diǎn)還是形如的有序?qū)崝?shù)對(duì),直線還是滿(mǎn)足的所有組成的圖形,角度大小的定義也和原來(lái)一樣,直角坐標(biāo)系內(nèi)任意兩點(diǎn)定義它們之間的一種“距離”:,請(qǐng)解決以下問(wèn)題:
(1)求線段上一點(diǎn)到點(diǎn)的“距離”;
(2)定義:“圓”是所有到定點(diǎn)“距離”為定值的點(diǎn)組成的圖形,求“圓”上的所有點(diǎn)到點(diǎn)的“距離”均為的“圓”方程,并求該“圓”圍成的圖形的面積;
(3)若點(diǎn)到點(diǎn)的“距離”和點(diǎn)到點(diǎn)的“距離”相等,其中實(shí)數(shù)滿(mǎn)足,求所有滿(mǎn)足條件的點(diǎn)的軌跡的長(zhǎng)之和.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com