【題目】已知圓錐母線長為5,底面圓半徑長為4,點M是母線PA的中點,AB是底面圓的直徑,點C是弧AB的中點;
(1)求三棱錐P﹣ACO的體積;
(2)求異面直線MC與PO所成的角.
【答案】
(1)解:∵圓錐母線長為5,底面圓半徑長為4,點M是母線PA的中點,
AB是底面圓的直徑,點C是弧AB的中點,
∴AB=8,OC=4,OC⊥AB,
∴PO= ,
∴三棱錐P﹣ACO的體積VP﹣ACO=
= .
(2)解:以O為原點,OC為x軸,OB為y軸,OP為z軸,建立空間直角坐標系,
A(0,﹣4,0),P(0,0,3),M(0,﹣2, ),C(4,0,0),O(0,0,0),
=(4,2,﹣ ), =(0,0,﹣3),
設異面直線MC與PO所成的角為θ,
cosθ= ,
故異面直線MC與PO所成的角為arccos .
【解析】(1)由已知得AB=8,OC=4,OC⊥AB,PO=3,由此能出三棱錐P﹣ACO的體積.(2)以O為原點,OC為x軸,OB為y軸,OP為z軸,建立空間直角坐標系,利用向量法能求出異面直線MC與PO所成的角.
【考點精析】關于本題考查的異面直線及其所成的角,需要了解異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點,作另一條的平行線;2、補形法:把空間圖形補成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關系才能得出正確答案.
科目:高中數(shù)學 來源: 題型:
【題目】[選修4-4:坐標系與參數(shù)方程]
在平面直角坐標系中,曲線C1: (a為參數(shù))經過伸縮變換 后的曲線為C2 , 以坐標原點為極點,x軸正半軸為極軸建立極坐標系.
(Ⅰ)求C2的極坐標方程;
(Ⅱ)設曲線C3的極坐標方程為ρsin( ﹣θ)=1,且曲線C3與曲線C2相交于P,Q兩點,求|PQ|的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知橢圓E: (a>b>0),圓O:x2+y2=r2(0<r<b),若圓O的一條切線l:y=kx+m與橢圓E相交于A,B兩點.
(Ⅰ)當k=﹣ ,r=1時,若點A,B都在坐標軸的正半軸上,求橢圓E的方程;
(Ⅱ)若以AB為直徑的圓經過坐標原點O,探究a,b,r之間的等量關系,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設數(shù)列{an}的前n項和為Sn , 若 (n∈N*),則稱{an}是“緊密數(shù)列”;
(1)若a1=1, ,a3=x,a4=4,求x的取值范圍;
(2)若{an}為等差數(shù)列,首項a1 , 公差d,且0<d≤a1 , 判斷{an}是否為“緊密數(shù)列”;
(3)設數(shù)列{an}是公比為q的等比數(shù)列,若數(shù)列{an}與{Sn}都是“緊密數(shù)列”,求q的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知兩圓x2+y2﹣2x+10y﹣24=0和 x2+y2+2x+2y﹣8=0
(1)判斷兩圓的位置關系;(2)求公共弦所在的直線方程及公共弦的長
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設M、N、T是橢圓 上三個點,M、N在直線x=8上的攝影分別為M1、N1 .
(Ⅰ)若直線MN過原點O,直線MT、NT斜率分別為k1 , k2 , 求證k1k2為定值.
(Ⅱ)若M、N不是橢圓長軸的端點,點L坐標為(3,0),△M1N1L與△MNL面積之比為5,求MN中點K的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知直線l過定點P(1,1),且傾斜角為 ,以坐標原點為極點,x軸的正半軸為極軸的坐標系中,曲線C的極坐標方程為 .
(1)求曲線C的直角坐標方程與直線l的參數(shù)方程;
(2)若直線l與曲線C相交于不同的兩點A,B,求|AB|及|PA||PB|的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com