【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的圖象的相鄰兩對(duì)稱(chēng)中心的距離為π,且f(x+ )=f(﹣x),則函數(shù)y=f( ﹣x)是(
A.偶函數(shù)且在x=0處取得最大值
B.偶函數(shù)且在x=0處取得最小值
C.奇函數(shù)且在x=0處取得最大值
D.奇函數(shù)且在x=0處取得最小值

【答案】A
【解析】解:∵函數(shù)f(x)=Asin(ωx+φ)的圖象的相鄰兩對(duì)稱(chēng)中心的距離為π, 即 ,
∴T=2π,于是
∴f(x)=Asin(x+φ);
由f(x+ )=f(﹣x),得:Asin(x+ +φ)=Asin(﹣x+φ),
∴x+ +φ﹣x+φ=π+2kπ,即φ=
取k=0,得φ= ,
∴f(x)=Asin(x+ ),
則y=f( ﹣x)=Asin( x+ )=Acosx,A>0,
∴函數(shù)y=f( ﹣x)是偶函數(shù)且在x=0處取得最大值.
故選:A.
【考點(diǎn)精析】本題主要考查了函數(shù)y=Asin(ωx+φ)的圖象變換的相關(guān)知識(shí)點(diǎn),需要掌握?qǐng)D象上所有點(diǎn)向左(右)平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(橫坐標(biāo)不變),得到函數(shù)的圖象才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PA⊥AD,AB∥CD,CD⊥AD,AD=CD=2AB=2,E,F(xiàn)分別為PC,CD的中點(diǎn),DE=EC.

(1)求證:平面ABE⊥平面BEF;
(2)設(shè)PA=a,若平面EBD與平面ABCD所成銳二面角 ,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量 =(cos ,﹣1), =( sin ,cos2 ),設(shè)函數(shù)f(x)= +1.
(1)若x∈[0, ],f(x)= ,求cosx的值;
(2)在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,且滿(mǎn)足2bcosA≤2c﹣ a,求f(B)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,圓錐的軸截面為等腰直角△SAB,Q為底面圓周上一點(diǎn).

(1)QB的中點(diǎn)為C,OHSC,求證OH⊥平面SBQ;

(2)如果∠AOQ=60°,QB=2求此圓錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=1n(x﹣1)﹣k(x﹣1)+1
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(x)≤0恒成立,試確定實(shí)數(shù)k的取值范圍;
(3)證明: 且n>1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=2016x+log2016 +x)﹣2016x+2,則關(guān)于x的不等式f(3x+1)+f(x)>4的解集為(
A.(﹣ ,+∞)
B.(﹣∞,﹣
C.(0,+∞)
D.(﹣∞,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱錐的側(cè)面是等腰直角三角形,,,且

(1)求證:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分圖象如圖所示,若將f(x)圖象上的所有點(diǎn)向右平移 個(gè)單位得到函數(shù)g(x)的圖象,則函數(shù)g(x)的單調(diào)遞增區(qū)間為(

A.[kπ﹣ ,kπ+ ],k∈Z
B.[2kπ﹣ ,2kπ+ ],k∈Z
C.[kπ﹣ ,kπ+ ],k∈Z
D.[2kπ﹣ ,2kπ+ ],k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=|x﹣a|,a<0.
(1)證明f(x)+f(﹣ )≥2;
(2)若不等式f(x)+f(2x)< 的解集非空,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案