將一顆質(zhì)地均勻的正方體骰子(六個面的點數(shù)分別為1,2,3,4,5,6)先后拋擲兩次,將得到的點數(shù)分別記為a,b.
(1)求直線ax+by+5=0與圓x2+y2=1相切的概率;
(2)將a,b,5的值分別作為三條線段的長,求這三條線段能圍成等腰三角形的概率.
考點:古典概型及其概率計算公式
專題:直線與圓
分析:(1)先后2次拋擲一枚骰子,將得到的點數(shù)分別記為a,b,事件總數(shù)為6×6=36,滿足條件的情況只有a=3,b=4,或a=4,b=3兩種情況.由此能求出直線ax+by+c=0與圓x2+y2=1相切的概率.
(2)先后2次拋擲一枚骰子,將得到的點數(shù)分別記為a,b,事件總數(shù)為6×6=36.滿足條件的不同情況共有14種.由此能求出三條線段能圍成不同的等腰三角形的概率.
解答: 解:(1)先后2次拋擲一枚骰子,
將得到的點數(shù)分別記為a,b,事件總數(shù)為6×6=36.
因為直線ax+by+5=0與圓x2+y2=1相切,
所以有
5
a2+b2
=1,
a2+b2=25,由于a,b∈{1,2,3,4,5,6}.
所以,滿足條件的情況只有a=3,b=4,或a=4,b=3兩種情況.
所以,直線ax+by+c=0與圓x2+y2=1相切的概率是
2
36
=
1
18

(2)先后2次拋擲一枚骰子,將得到的點數(shù)分別記為a,b,事件總數(shù)為6×6=36.
因為,三角形的一邊長為5,
所以,當a=1時,b=5,(1,5,5)1種,
當a=2時,b=5,(2,5,5)1種,
當a=3時,b=3,5,(3,3,5),(3,5,5)2種,
當a=4時,b=4,5,(4,4,5),(4,5,5)2種,
當a=5時,b=1,2,3,4,5,6,
(5,1,5),(5,2,5),(5,3,5),
(5,4,5),(5,5,5),(5,6,5)6種
當a=6時,b=5,6,(6,5,5),(6,6,5)2種
故滿足條件的不同情況共有14種.
所以,三條線段能圍成不同的等腰三角形的概率為
14
36
=
7
18
點評:本題考查概率的求法,是中檔題,解題時要認真審題,注意列舉法的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在等比數(shù)列{an}中,a1=1,且|q|≠1,若am=a2a3a4,則m=(  )
A、5B、6C、7D、8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在直三棱柱ABC-A1B1C1中,已知CA=CB=1,AA1=2,∠BCA=90°.
(1)求異面直線BA1與CB1夾角的余弦值;
(2)求二面角B-AB1-C平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求函數(shù)f(x)=x+
1+x2
在區(qū)間[-1,1]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在R上的函數(shù)f(x)滿足:f(-x)+f(x)=x2,當x<0時,f′(x)<x,則不等式f(x)+
1
2
≥f(1-x)+x的解集為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}中,a1=1,Sn=2an-1(Sn為數(shù)列{an}的前n項和),數(shù)列{bn}為等差數(shù)列且滿足b1=a4,b4=a2;
(1)求數(shù)列{an}的通項公式;
(2)設數(shù)列{|bn|}的前n項和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD是平行四邊形,PC⊥平面ABCD,PC=4,AB=6,BD=3
3
,∠DAB=60°.
(Ⅰ)求證:BD⊥平面PBC;
(Ⅱ)若E,F(xiàn),G分別是線段BC,DC,PC上的動點,且EF=2,試探究多面體PDBGFE的體積是否存在最小值,若存在,求出最小值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)=ax2-6lnx,其中a∈R,曲線y=f(x)在點(1,f(1))處的切線與y軸相交于點(0,3).
(1)確定a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間與極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax-(2a-1)lnx+b
(1)若f(x)在x=1處的切線方程為y=x,求實數(shù)a,b的值;
(2)當a>
1
2
時,研究f(x)的單調(diào)性;
(3)當a=1時,f(x)在區(qū)間(
1
e
,e)上恰有一個零點,求實數(shù)b的取值范圍.

查看答案和解析>>

同步練習冊答案