已知是拋物線的焦點(diǎn),準(zhǔn)線與軸的交點(diǎn)為,點(diǎn)在拋物線上,且,則等于(     )

A.B.C.D.

C

解析試題分析:
過(guò)N作NE垂直于準(zhǔn)線與E,由拋物線的定義得|NE|=|NF|;在RT△ENM中求出∠EMN=30°.即可得到結(jié)論.解:過(guò)N作NE垂直于準(zhǔn)線與E.

由拋物線的定義得:|NE|=|NF|.
在RT△ENM中因?yàn)閨EN|=|NF|= |MN|.所以:∠EMN=30°.故:∠NMF=90°-∠EMN=60°.故選C
考點(diǎn):拋物線的簡(jiǎn)單性質(zhì)
點(diǎn)評(píng):本題主要考查拋物線的簡(jiǎn)單性質(zhì).解決問(wèn)題的關(guān)鍵在于利用拋物線的定義得到|NE|=|NF|

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

已知分別是雙曲線的左右焦點(diǎn),為雙曲線的右頂點(diǎn),線段的垂直平分線交雙曲線于,且,則雙曲線的離心率為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

設(shè)m是常數(shù),若是雙曲線的一個(gè)焦點(diǎn),則m的值為(    )

A.16 B.34 C.16或34 D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

已知橢圓的焦點(diǎn)為,P是橢圓上一動(dòng)點(diǎn),如果延長(zhǎng)F1PQ,使,那么動(dòng)點(diǎn)Q的軌跡是(      )

A.橢圓B.雙曲線C.拋物線D.圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

橢圓+=1(a>b>0)上一點(diǎn)A關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)為B, F為其右焦點(diǎn), 若AF⊥BF, 設(shè)∠ABF=, 且∈[,], 則該橢圓離心率的取值范圍為            (       )

A.[,1 ) B.[,] C.[, 1) D.[,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

若焦點(diǎn)在軸上的橢圓的離心率為,則的值為(   )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

過(guò)雙曲線的左焦點(diǎn)F(-c,0)(c >0),作圓:的切線,切點(diǎn)為E,延長(zhǎng)FE交雙曲線右支于點(diǎn)P,若,則雙曲線的離心率為

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

設(shè)拋物線的頂點(diǎn)在原點(diǎn),準(zhǔn)線方程為則拋物線的方程是(    )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

如圖,軸截面為邊長(zhǎng)為等邊三角形的圓錐,過(guò)底面圓周上任一點(diǎn)作一平面,且與底面所成二面角為,已知與圓錐側(cè)面交線的曲線為橢圓,則此橢圓的離心率為(  )

A.  B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案