如圖,軸截面為邊長(zhǎng)為等邊三角形的圓錐,過底面圓周上任一點(diǎn)作一平面,且與底面所成二面角為,已知與圓錐側(cè)面交線的曲線為橢圓,則此橢圓的離心率為( 。

A.  B.C.D.

C

解析試題分析:根據(jù)題意,由于軸截面為邊長(zhǎng)為等邊三角形的圓錐,過底面圓周上任一點(diǎn)作一平面,且與底面所成二面角為,那么可知橢圓的長(zhǎng)軸長(zhǎng)為8,那么短軸長(zhǎng)為,那么結(jié)合橢圓的性質(zhì)可知其離心率為,故選C.
考點(diǎn):橢圓的幾何性質(zhì)
點(diǎn)評(píng):解決的關(guān)鍵是根據(jù)截面圖形的特征來得到橢圓中a,b的值,進(jìn)而求解離心率,屬于基礎(chǔ)題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知是拋物線的焦點(diǎn),準(zhǔn)線與軸的交點(diǎn)為,點(diǎn)在拋物線上,且,則等于(     )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

若拋物線的焦點(diǎn)到準(zhǔn)線的距離為4,則此拋物線的焦點(diǎn)坐標(biāo)為

A. B. C. D. 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知橢圓與雙曲線有相同的焦點(diǎn),若cam的等比中項(xiàng),n2是2m2c2的等差中項(xiàng),則橢圓的離心率為

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

設(shè)圓的圓心為C,A(1,0)是圓內(nèi)一定點(diǎn),Q為圓周上任一點(diǎn).線段AQ的垂直平分線與CQ的連線交于點(diǎn)M,則M的軌跡方程為(  ).

A. B.
C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

點(diǎn)在直線上,若存在過的直線交拋物線兩點(diǎn),且,則稱點(diǎn)為“點(diǎn)”,那么下列結(jié)論中正確的是(   )

A.直線上的所有點(diǎn)都是“點(diǎn)” B.直線上僅有有限個(gè)點(diǎn)是“點(diǎn)” 
C.直線上的所有點(diǎn)都不是“點(diǎn)” D.直線上有無窮多個(gè)點(diǎn)是“點(diǎn)” 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

設(shè)雙曲線的焦點(diǎn)為F1、F2,過F1作x軸的垂線與該雙曲線相交,其中一個(gè)交點(diǎn)為M,則||=

A.5 B.4 C.3 D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

設(shè)為雙曲線()的兩個(gè)焦點(diǎn), 若點(diǎn)和點(diǎn)是正三角形的三個(gè)頂點(diǎn),則雙曲線的離心率為(    )。

A. B. C. D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

若雙曲線的離心率為2,則雙曲線的離心率為(    )

A. B. C.2 D.

查看答案和解析>>

同步練習(xí)冊(cè)答案