【題目】為了研究“教學(xué)方式”對教學(xué)質(zhì)量的影響,某高中老師分別用兩種不同的教學(xué)方式對入學(xué)數(shù)學(xué)平均分數(shù)和優(yōu)秀率都相同的甲、乙兩個高一新班進行教學(xué)(勤奮程度和自覺性都一樣).以下莖葉圖為甲、乙兩班(每班均為20人)學(xué)生的數(shù)學(xué)期末考試成績.
甲班 | 乙班 | 合計 | |
優(yōu)秀 | |||
不優(yōu)秀 | |||
合計 |
現(xiàn)從甲班數(shù)學(xué)成績不低于80分的同學(xué)中隨機抽取兩名同學(xué),求成績?yōu)?7分的同學(xué)至少有一名被抽中的概率;
(II)學(xué)校規(guī)定:成績不低于75分的為優(yōu)秀.請?zhí)顚懴旅娴?×2列聯(lián)表,并判斷有多大把握認為“成績優(yōu)秀與教學(xué)方式有關(guān)”.
下面臨界值表供參考:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:K2=)
【答案】(1);(2)列聯(lián)表見解析,有%的把握認為成績優(yōu)秀與教學(xué)方式有關(guān).
【解析】
(1)先求得甲班數(shù)學(xué)成績不低于80分的同學(xué)人數(shù)及成績?yōu)?/span>87分的同學(xué)人數(shù),利用排列組合求得基本事件的個數(shù),根據(jù)古典概型的概率公式計算可得結(jié)論;(2)根據(jù)莖葉圖分別求出甲、乙班優(yōu)秀的人數(shù)與不優(yōu)秀的人數(shù),列出列聯(lián)表,利用相關(guān)指數(shù)公式計算的觀測值,比較與臨界值的大小,判斷成績優(yōu)秀與教學(xué)方式有關(guān)的可靠程度.
解:(1)甲班成績?yōu)?/span>87分的同學(xué)有2個,其他不低于80分的同學(xué)有3個“從甲班數(shù)學(xué)成績不低于80分的同學(xué)中隨機抽取兩名同學(xué)”的一切可能結(jié)果組成的基本事件有C=10(個),“抽到至少有一個87分的同學(xué)”所組成的基本事件有CC+C=(7個),所以P=.
(2)2×2列聯(lián)表如下:
甲班 | 乙班 | 合計 | |
優(yōu)秀 | 6 | 14 | 20 |
不優(yōu)秀 | 14 | 6 | 20 |
合計 | 20 | 20 | 40 |
K2==6.4>5.024.
因此,我們有97.5%的把握認為成績優(yōu)秀與教學(xué)方式有關(guān).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一次數(shù)學(xué)考試后,對高三文理科學(xué)生進行抽樣調(diào)查,調(diào)查其對本次考試的結(jié)果滿意或不滿意,現(xiàn)隨機抽取名學(xué)生的數(shù)據(jù)如下表所示:
滿意 | 不滿意 | 總計 | |
文科 | 22 | 18 | 40 |
理科 | 48 | 12 | 60 |
總計 | 70 | 30 | 100 |
(1)根據(jù)數(shù)據(jù),有多大的把握認為對考試的結(jié)果滿意與科別有關(guān);
(2)用分層抽樣方法在感覺不滿意的學(xué)生中隨機抽取名,理科生應(yīng)抽取幾人;
(3)在(2)抽取的名學(xué)生中任取2名,求文科生人數(shù)的期望.(其中)
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)、為拋物線上的兩點,與的中點的縱坐標(biāo)為4,直線的斜率為.
(1)求拋物線的方程;
(2)已知點,、為拋物線(除原點外)上的不同兩點,直線、的斜率分別為,,且滿足,記拋物線在、處的切線交于點,線段的中點為,若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)上的偶函數(shù),其圖象關(guān)于點對稱,且在區(qū)間上是單調(diào)函數(shù),則的值是( )
A. B. C. 或 D. 無法確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦距與短軸長相等,長軸長為,設(shè)過右焦點F傾斜角為的直線交橢圓M于A、B兩點.
(1)求橢圓M的方程;
(2)求證:
(3)設(shè)過右焦點F且與直線AB垂直的直線交橢圓M于C、D,求四邊形ABCD面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為=(>0),過點的直線的參數(shù)方程為(t為參數(shù)),直線與曲線C相交于A,B兩點.
(Ⅰ)寫出曲線C的直角坐標(biāo)方程和直線的普通方程;
(Ⅱ)若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】每個國家對退休年齡都有不一樣的規(guī)定,從2018年開始,我國關(guān)于延遲退休的話題一直在網(wǎng)上熱議,為了了解市民對“延遲退休”的態(tài)度,現(xiàn)從某地市民中隨機選取100人進行調(diào)查,調(diào)查情況如下表:
年齡段(單位:歲) | ||||||
被調(diào)查的人數(shù) | ||||||
贊成的人數(shù) |
(1)從贊成“延遲退休”的人中任選1人,此人年齡在的概率為,求出表格中的值;
(2)若從年齡在的參與調(diào)查的市民中按照是否贊成“延遲退休”進行分層抽樣,從中抽取10人參與某項調(diào)查,然后再從這10人中隨機抽取4人參加座談會,記這4人中贊成“延遲退休”的人數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com