【題目】在直角坐標系xOy中,以坐標原點為極點,x軸的非負半軸為極軸建立極坐標系;曲線C1的普通方程為(x-1)2 +y2 =1,曲線C2的參數(shù)方程為θ為參數(shù)).

(Ⅰ)求曲線C1C2的極坐標方程:

(Ⅱ)設射線θ=(ρ>0)分別與曲線C1C2相交于A,B兩點,求|AB|的值.

【答案】(Ⅰ),;(Ⅱ)

【解析】

(Ⅰ)根據(jù),可得曲線C1的極坐標方程,然后先計算曲線C2的普通方程,最后根據(jù)極坐標與直角坐標的轉化公式,可得結果.

(Ⅱ)將射線θ=分別與曲線C1C2極坐標方程聯(lián)立,可得AB的極坐標,然后簡單計算,可得結果.

(Ⅰ)

所以曲線的極坐標方程為,

曲線的普通方程為

則曲線的極坐標方程為

(Ⅱ)令,則,,

,即,

所以,

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列的公差不為零,且,、成等比數(shù)列,數(shù)列滿足

1)求數(shù)列的通項公式;

2)求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題共13分)已知函數(shù) 的最小正周期為

)求的值;

)求函數(shù)的單調區(qū)間及其圖象的對稱軸方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)若函數(shù)有且只有一個零點,求實數(shù)的取值范圍;

2)若函數(shù)恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,點E是正方體ABCD-A1B1C1D1的棱DD1的中點,點F,M分別在線段AC,BD1(不包含端點)上運動,則(

A.在點F的運動過程中,存在EF//BC1

B.在點M的運動過程中,不存在B1MAE

C.四面體EMAC的體積為定值

D.四面體FA1C1B的體積不為定值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地區(qū)為了調查高粱的高度、粒的顏色與產(chǎn)量的關系,對700棵高粱進行抽樣調查,得到高度頻數(shù)分布表如下:

1:紅粒高粱頻數(shù)分布表

農(nóng)作物高度(

頻數(shù)

2

5

14

13

4

2

2:白粒高粱頻數(shù)分布表

農(nóng)作物高度(

頻數(shù)

1

7

12

6

3

1

1)估計這700棵高粱中紅粒高粱的棵數(shù);畫出這700棵高粱中紅粒高粱的頻率分布直方圖;

2)①估計這700棵高粱中高粱高(cm)在的概率;②在紅粒高粱中,從高度(單位:cm)在中任選3棵,設表示所選3棵中高(單位:cm)在的棵數(shù),求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】冠狀病毒是一個大型病毒家族,己知可引起感冒以及中東呼吸綜合征()和嚴重急性呼吸綜合征()等較嚴重疾病.而今年出現(xiàn)在湖北武漢的新型冠狀病毒()是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株.人感染了新型冠狀病毒后常見體征有呼吸道癥狀、發(fā)熱、咳嗽、氣促和呼吸困難等.在較嚴重病例中,感染可導致肺炎、嚴重急性呼吸綜合征、腎衰竭,甚至死亡.

某醫(yī)院為篩查冠狀病毒,需要檢驗血液是否為陽性,現(xiàn)有n)份血液樣本,有以下兩種檢驗方式:

方式一:逐份檢驗,則需要檢驗n.

方式二:混合檢驗,將其中k)份血液樣本分別取樣混合在一起檢驗.

若檢驗結果為陰性,這k份的血液全為陰性,因而這k份血液樣本只要檢驗一次就夠了,如果檢驗結果為陽性,為了明確這k份血液究竟哪幾份為陽性,就要對這k份再逐份檢驗,此時這k份血液的檢驗次數(shù)總共為.

假設在接受檢驗的血液樣本中,每份樣本的檢驗結果是陽性還是陰性都是獨立的,且每份樣本是陽性結果的概率為p.現(xiàn)取其中k)份血液樣本,記采用逐份檢驗方式,樣本需要檢驗的總次數(shù)為,采用混合檢驗方式,樣本需要檢驗的總次數(shù)為.

1)若,試求p關于k的函數(shù)關系式;

2)若p與干擾素計量相關,其中)是不同的正實數(shù),

滿足)都有成立.

i)求證:數(shù)列等比數(shù)列;

ii)當時,采用混合檢驗方式可以使得樣本需要檢驗的總次數(shù)的期望值比逐份檢驗的總次數(shù)的期望值更少,求k的最大值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,底面,為直角梯形,,,,過點作平面平行于平面,平面與棱,,分別相交于點,,.

(1)求的長度;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,在平行四邊形中,,,,以對角線為折痕把折起,使點到圖2所示點的位置,使得.

(Ⅰ)求證:平面平面;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

同步練習冊答案