10.設α,β,γ為兩兩不重合的平面,l,m,n為兩兩不重合的直線,給出下列四個命題,其中真命題有( 。
①若m?α,n?β,α⊥β,則m⊥n;
②若m⊥α,n∥β且α∥β,則m⊥n;
③若α∥β,l?α,則l∥β;
④若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,則m∥n.
A.1個B.2個C.3個D.4個

分析 ①,在兩個垂直平面內(nèi)各取一條直線,它們不一定垂直;
②,由m⊥α且α∥β⇒m⊥β,又因為n∥β∴m⊥n,;
③,由α∥β,l?α⇒直線l與平面β無公共點;
④,由線面平行的性質(zhì)定理J及公理,即可得到則m∥n.

解答 解:對于①,在兩個垂直平面內(nèi)各取一條直線,它們不一定垂直,故錯;
對于②,由m⊥α且α∥β⇒m⊥β,又因為n∥β m⊥n,故正確;
對于③,由α∥β,l?α⇒直線l與平面β無公共點,即l∥β,故正確;
對于④,由α∩β=l,β∩γ=m,γ∩α=n,線面平行的性質(zhì)定理⇒n∥γ,
根據(jù)平行公理,即可得到則m∥n,故正確
故選:C.

點評 本題考查的知識點是直線與平面的位置關(guān)系,是對線面平行、垂直性質(zhì)的直接考查,屬于中檔題

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

20.已知F1,F(xiàn)2是橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的兩焦點,過點F2的直線交橢圓于A,B兩點.在△AF1B中,若有兩邊之和是15,則第三邊的長度為( 。
A.6B.5C.4D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知向量$\overrightarrow{e_1}$、$\overrightarrow{e_2}$為不共線向量,向量$\overrightarrow a$=3$\overrightarrow{e_1}$-2$\overrightarrow{e_2}$,向量$\overrightarrow b$=$\overrightarrow{e_1}$+λ$\overrightarrow{e_2}$,若向量$\overrightarrow a$∥$\overrightarrow b$,則λ=-$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.《張丘建算經(jīng)》是中國古代的數(shù)學著作,書中有一道題為:“今有女善織,日益功疾(注:從第2天開始,每天比前一天多織相同量的布),第一天織5尺布,現(xiàn)一月(按30天計)共織390尺布”,則從第2天起每天比前一天多織(  )尺布.
A.$\frac{8}{15}$B.$\frac{16}{31}$C.$\frac{16}{29}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+2(x≤-1)}\\{{x}^{2}(-1<x<2)}\\{2x(x≥2)}\end{array}\right.$
(1)求f(2),f($\frac{1}{2}$),f[f(-1)];
(2)若f(a)=3,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.設φ∈R,則“φ=2kπ+$\frac{π}{2}$(k∈Z)”是“f(x)=cos(2x+φ)為奇函數(shù)”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.若奇函數(shù)f(x)在(0,+∞)上是增函數(shù),且f(-1)=0,則不等式xf(x)>0的解集是{x|0<x<1或-1<x<0}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.如果函數(shù)f(x)對其定義域內(nèi)的兩個實數(shù)x1、x2,都滿足不等式$f({\frac{{{x_1}+{x_2}}}{2}})<\frac{{f({x_1})+f({x_2})}}{2}$,則稱函數(shù)f(x)在其定義域內(nèi)具有性質(zhì)M.給出下列函數(shù):①$y=\sqrt{x}$;②y=x2;③y=2x;④y=log2x.其中具有性質(zhì)M的是( 。
A.①④B.②③C.③④D.①②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.若函數(shù)f(x)=(k+2)ax+2-b(a>0,且a≠1)是指數(shù)函數(shù)
(1)求k,b的值;
(2)求解不等式f(2x-7)>f(4x-1)

查看答案和解析>>

同步練習冊答案