【題目】在直角坐標系中,圓的普通方程為.在以坐標原點為極點,軸正半軸為極軸的極坐標系中,直線的極坐標方程為.
(1)寫出圓的參數(shù)方程和直線的直角坐標方程;
(2)設點在上,點Q在上,求的最小值及此時點的直角坐標.
【答案】(1)圓的參數(shù)方程:,直線:;(2),此時點的坐標為
【解析】
(1)整理圓的方程為,即可寫出參數(shù)方程,利用將直線方程寫為直角坐標方程即可;
(2)法一:利用參數(shù)方程設曲線上的點,利用點到直線距離公式可得,則根據(jù)三角函數(shù)的性質(zhì)求處最值,并將代回求得坐標;
法二:為圓心到直線距離減去半徑,再利用弦與直線垂直的性質(zhì)得所在直線為,聯(lián)立直線與圓的方程即可求得交點的坐標
(1)圓的方程可化為,圓心為,半徑為,
∴圓的參數(shù)方程為(為參數(shù)),
直線的極坐標方程可化為,
∵,∴直線的直角坐標方程為
(2)法一:設曲線上的點,
點到直線:的距離:
,
當時,,
此時點的坐標為,所以,此時點的坐標為
法二:曲線是以為圓心,半徑為的圓,
圓心到直線的距離,
所以,
此時直線經(jīng)過圓心,且與直線垂直,
,所以,所在直線方程為,即,
聯(lián)立直線和圓的方程,解得或,
當取得最小值時,點的坐標為,
所以,此時點的坐標為
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,橢圓C的中心在坐標原點O,其右焦點為,且點在橢圓C上.
求橢圓C的方程;
設橢圓的左、右頂點分別為A、B,M是橢圓上異于A,B的任意一點,直線MF交橢圓C于另一點N,直線MB交直線于Q點,求證:A,N,Q三點在同一條直線上.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線,準線方程為,直線過定點()且與拋物線交于、兩點,為坐標原點.
(1)求拋物線的方程;
(2)是否為定值,若是,求出這個定值;若不是,請說明理由;
(3)當時,設,記,求的解析式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),為常數(shù),且.
(1)證明函數(shù)的圖象關于直線對稱;
(2)當時,討論方程解的個數(shù);
(3)若滿足,但,則稱為函數(shù)的二階周期點,則是否有兩個二階周期點,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的兩個焦點分別為,,,過點的直線與橢圓相交于點A,B兩點,且
(1)若,求橢圓的方程;
(2)直線AB的斜率;
(3)設點C與點A關于坐標原點對稱,直線上有一點在的外接圓上,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種零件的質(zhì)量指標值為整數(shù),指標值為8時稱為合格品,指標值為7或者9時稱為準合格品,指標值為6或10時稱為廢品,某單位擁有一臺制造該零件的機器,為了了解機器性能,隨機抽取了該機器制造的100個零件,不同的質(zhì)量指標值對應的零件個數(shù)如下表所示;
質(zhì)量指標值 | 6 | 7 | 8 | 9 | 10 |
零件個數(shù) | 6 | 18 | 60 | 12 | 4 |
使用該機器制造的一個零件成本為5元,合格品可以以每個元的價格出售給批發(fā)商,準合格品與廢品無法岀售.
(1)估計該機器制造零件的質(zhì)量指標值的平均數(shù);
(2)若該單位接到一張訂單,需要該零件2100個,為使此次交易獲利達到1400元,估計的最小值;
(3)該單位引進了一臺加工設備,每個零件花費2元可以被加工一次,加工結果會等可能出現(xiàn)以下三種情況:①質(zhì)量指標值增加1,②質(zhì)量指標值不變,③質(zhì)量指標值減少1.已知每個零件最多可被加工一次,且該單位計劃將所有準合格品逐一加工,在(2)的條件下,估計的最小值(精確到0.01) .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,直線的極坐標方程為.
(1)求的普通方程和的直角坐標方程;
(2)直線與軸的交點為,經(jīng)過點的直線與曲線交于兩點,若,求直線的傾斜角.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com