A. | (1,+∞) | B. | (2,+∞) | C. | (-∞,-1)∪(1,+∞) | D. | (-∞,-2)∪(2,+∞) |
分析 結(jié)合已知的函數(shù)的解析式,分別求出a>0和a<0時(shí)的情況下不等式的解集,即可得到答案.
解答 解:當(dāng)a>0時(shí),不等式a[f(a)-f(-a)]>0化為a2+a-3a>0,解得a>2,
當(dāng)a<0時(shí),不等式a[f(a)-f(-a)]>0化為-a2-2a<0,解得a<-2,
綜上所述a的取值范圍為(-∞,-2)∪(2,+∞),
故選:D
點(diǎn)評(píng) 本題考查了分段函數(shù)和不等式的解法,關(guān)鍵是分類(lèi)討論,屬于基礎(chǔ)題
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -1 | B. | -$\frac{5\sqrt{2}+1}{7}$ | C. | $\frac{1}{3}$ | D. | -$\frac{7}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(x)=f(x+π) | B. | f(x)=f(x+$\frac{π}{2}$) | C. | f(x)=f($\frac{π}{3}$-x) | D. | f(x)=f($\frac{π}{6}$-x) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
x | 2 | 4 | 6 | 8 |
y | 3 | 4 | 6 | 7 |
A. | 4.625噸 | B. | 4.9375噸 | C. | 5噸 | D. | 5.25噸 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 36 | B. | 72 | C. | C144 | D. | 288 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com